Página 1 de 1

[Números Complexos] Módulo.

MensagemEnviado: Dom Fev 02, 2014 15:21
por HCF01
Determine o maior e o menor valores possíveis para |z|, dado que |z + 1/z|= 1. ( módulo de "z" mais "1 sobre z" é igual a 1 )

Tentei tirar o mmc, daí ficou |z²/z + 1/z|= 1, depois |z²+1| / |z|= 1 e então |z²+1|=|z|, só que não sei mais o que fazer. Se alguém puder me explicar eu agradeço.




Resposta: Máx= ?5/2 + 1/2 e mín= ?5/2 - 1/2.

Re: [Números Complexos] Módulo.

MensagemEnviado: Seg Fev 03, 2014 16:14
por HCF01
Achei a resposta nesse site, caso alguém queria ver a resolução. http://pir2.forumeiros.com/t63264-numer ... ulo#223441

Re: [Números Complexos] Módulo.

MensagemEnviado: Seg Fev 03, 2014 19:57
por e8group
Segue outra ...

Pondo W = 1/Z + Z e utilizando que \frac{1}{Z} = \frac{Z^{*}}{|Z|^2} (onde Z^{*} é o conjugado de Z ) , temos

W = \frac{Z^{*}}{|Z|^2}  + Z . Multiplicando-se ambos lados desta igualdade por Z^{*} ,segue W \cdot Z^{*} = \left( \frac{Z^{*}}{|Z|}\right)^2 + Z \cdot Z^{*} = \left( \frac{Z^{*}}{|Z|}\right)^2 + |Z|^2 .

Daí , quando tomamos o módulo do número complexo acima , obteremos

| W \cdot Z^{*}| = | Z^{*}| = |Z| = |\left(\frac{Z^{*}}{|Z|}\right)^2 + |Z|^2| . Porém ,

|\frac{Z^{*}}{|Z|}\right)^2 + |Z|^2| \leq |\left(\frac{Z^{*}}{|Z|}\right)^2| + |Z|^2 = |\frac{Z^{*}}{|Z|}|^2 = 1 + |Z|^2 e com isso ganhamos a desigualdade

|Z| \leq  1 + |Z|^2 ou de forma equivalente

|Z|^2  - |Z| + 1 \geq 0 .

A solução da inequação acima é um intervalo não degenerado da forma I = [a,b] . Logo ,

a = min I e b = max I . Repare que a,b são as raízes da eq |Z|^2  - |Z| + 1 =0 .