• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Números Complexos] Representação geométrica

[Números Complexos] Representação geométrica

Mensagempor mota_16 » Sáb Dez 28, 2013 23:10

Nesse caso, como faço para descrever geometricamente. Percebi que tenho uma soma de distâncias, mas não consegui avançar.

O subconjunto do plano complexo A=\left[z\in C/\left|z-i \right|+\left|z+i \right|=1 \right] deve ser descrito geometricamente como:

a) uma circunferência
b) uma hipérbole
c) uma elipse
d) uma parábola
e) duas retas
mota_16
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Dez 06, 2013 10:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Regular
Andamento: cursando

Re: [Números Complexos] Representação geométrica

Mensagempor e8group » Dom Dez 29, 2013 16:50

Um número complexo z se exprimir por x + iy(x,y sobre \mathbb{R} ) . Agora suponha que z \in A ,então a propriedade |z -i| + |z+i|=1 é verdadeira e substituindo z por x + iy ,obterá a soma de módulos de dois números complexos . Lembre-se |z|^2 = x^2+y^2 .

Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Números Complexos] Representação geométrica

Mensagempor mota_16 » Seg Dez 30, 2013 14:42

Santhiago eu substituí e obtive:

\left|x+iy-i \right|+\left|x+iy+i \right|=1

Pensei em colocar i em evidência:

\left|x+i(y-1) \right|+\left|x+i(y+1) \right|=1

Como \left|z \right|={x}^{2}+{y}^{2}. Pensei em elevar ambos os membros ao quadrado, mas encontrei resultados que não me ajudaram. É isso? Esse é o caminho?
mota_16
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Dez 06, 2013 10:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Regular
Andamento: cursando

Re: [Números Complexos] Representação geométrica

Mensagempor e8group » Seg Dez 30, 2013 18:36

Está no caminho certo . Antes de elevar ao quadrado ,trabalhe apenas com um radical ao lado da igualdade .Logo após eleve ao quadrado e faça as simplificações e comente o que conseguiu .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Números Complexos] Representação geométrica

Mensagempor mota_16 » Seg Dez 30, 2013 20:38

Vamos lá...

\left|x+i\left(y-1 \right) \right|+\left|x+i\left(y+1 \right) \right|=1

\left|x+i\left(y-1 \right) \right|=1-\left|x+i\left(y+1 \right) \right|

Elevando ambos os membros ao quadrado:

\left( \left|x+i\left(y-1 \right) \right| \right)^2=\left( 1-\left|x+i\left(y+1 \right) \right| \right)^2

\left( \left|x+i\left(y-1 \right) \right| \right)^2=1-2\left|x+i\left(y+1 \right) \right|+\left|x+i\left(y+1 \right) \right|^2

Aqui pensei em usar a propriedade: \left|{x}^{2} \right|=\left|x \right|^2={x}^{2}

Então:

\left[x+i\left(y-1 \right) \right]^2=1-2\left|x+i\left(y+1 \right) \right|+\left[x+i\left(y+1 \right) \right]^2

Observe que fiquei com o módulo apenas no segundo termo do segundo membro da igualdade.

{x}^{2}+2xi\left(y-1 \right)+{i}^{2}\left(y-1 \right)^2=1-2\left|x+i\left(y+1 \right) \right|+{x}^{2}+2xi\left(y+1 \right)+{i}^{2}\left(y+1 \right)^2

Como: {i}^{2}= -1

{x}^{2}+2xi\left(y-1 \right)-\left(y-1 \right)^2=1-2\left|x+i\left(y+1 \right) \right|+{x}^{2}+2xi\left(y+1 \right)-\left(y+1 \right)^2

{x}^{2}+2xi\left(y-1 \right)-\left({y}^{2}-2y+1 \right)=1-2\left|x+i\left(y+1 \right) \right|+{x}^{2}+2xi\left(y+1 \right)-\left({y}^{2}+2y+1 \right)

{x}^{2}+2xi\left(y-1 \right)-{y}^{2}+2y-1 \right)=1-2\left|x+i\left(y+1 \right) \right|+{x}^{2}+2xi\left(y+1 \right)-y}^{2}-2y-1 \right)

Efetuando a simplificação:

2xi\left(y-1 \right)+2y-1 \right)=-2\left|x+i\left(y+1 \right) \right|+2xi\left(y+1 \right)-2y \right)

E aqui eu não consegui avançar no sentido de resolver o problema.
mota_16
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Dez 06, 2013 10:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Regular
Andamento: cursando

Re: [Números Complexos] Representação geométrica

Mensagempor e8group » Seg Dez 30, 2013 21:07

Boa noite. Um número complexo se escreve como z = a + ib (a,b reais) e seu valor absoluto é por definição |z| = \sqrt{a^2+b^2} ou |z|^2 =a^2+b^2. (Há um interpretação geométrica p/ isso,este abs pode ser encontrado via Teorema de Pitágoras ) .

Prosseguindo ...

z \in A \iff  |z-i| + |z+i| = 1 .Pondo z:= x + yi ; x,y \in \mathbb{R} ,resulta

|(x+yi)- i| + |(x+yi) + i| = 1 \iff  | x + (y-1)i| + | x + (1+y)i| = 1 (*) .

Seja z_1 = x + (y-1)i e z_2 = x + (1+y)i . Pelo que x,y-1,y+1 \in \mathbb{R} então z_1,z_2 \in \mathbb{C} e |z_1| = \sqrt{x^2 +(y-1)^2} , |z_2| = \sqrt{x^2 +(y+1)^2} .De (*) , temos

\sqrt{x^2 +(y-1)^2} + \sqrt{x^2 +(y+1)^2} = 1 \iff  \sqrt{x^2 +(y-1)^2} = 1 - \sqrt{x^2 +(y+1)^2} .

Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D