• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Números Complexos] Representação geométrica

[Números Complexos] Representação geométrica

Mensagempor mota_16 » Sáb Dez 28, 2013 23:10

Nesse caso, como faço para descrever geometricamente. Percebi que tenho uma soma de distâncias, mas não consegui avançar.

O subconjunto do plano complexo A=\left[z\in C/\left|z-i \right|+\left|z+i \right|=1 \right] deve ser descrito geometricamente como:

a) uma circunferência
b) uma hipérbole
c) uma elipse
d) uma parábola
e) duas retas
mota_16
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Dez 06, 2013 10:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Regular
Andamento: cursando

Re: [Números Complexos] Representação geométrica

Mensagempor e8group » Dom Dez 29, 2013 16:50

Um número complexo z se exprimir por x + iy(x,y sobre \mathbb{R} ) . Agora suponha que z \in A ,então a propriedade |z -i| + |z+i|=1 é verdadeira e substituindo z por x + iy ,obterá a soma de módulos de dois números complexos . Lembre-se |z|^2 = x^2+y^2 .

Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Números Complexos] Representação geométrica

Mensagempor mota_16 » Seg Dez 30, 2013 14:42

Santhiago eu substituí e obtive:

\left|x+iy-i \right|+\left|x+iy+i \right|=1

Pensei em colocar i em evidência:

\left|x+i(y-1) \right|+\left|x+i(y+1) \right|=1

Como \left|z \right|={x}^{2}+{y}^{2}. Pensei em elevar ambos os membros ao quadrado, mas encontrei resultados que não me ajudaram. É isso? Esse é o caminho?
mota_16
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Dez 06, 2013 10:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Regular
Andamento: cursando

Re: [Números Complexos] Representação geométrica

Mensagempor e8group » Seg Dez 30, 2013 18:36

Está no caminho certo . Antes de elevar ao quadrado ,trabalhe apenas com um radical ao lado da igualdade .Logo após eleve ao quadrado e faça as simplificações e comente o que conseguiu .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Números Complexos] Representação geométrica

Mensagempor mota_16 » Seg Dez 30, 2013 20:38

Vamos lá...

\left|x+i\left(y-1 \right) \right|+\left|x+i\left(y+1 \right) \right|=1

\left|x+i\left(y-1 \right) \right|=1-\left|x+i\left(y+1 \right) \right|

Elevando ambos os membros ao quadrado:

\left( \left|x+i\left(y-1 \right) \right| \right)^2=\left( 1-\left|x+i\left(y+1 \right) \right| \right)^2

\left( \left|x+i\left(y-1 \right) \right| \right)^2=1-2\left|x+i\left(y+1 \right) \right|+\left|x+i\left(y+1 \right) \right|^2

Aqui pensei em usar a propriedade: \left|{x}^{2} \right|=\left|x \right|^2={x}^{2}

Então:

\left[x+i\left(y-1 \right) \right]^2=1-2\left|x+i\left(y+1 \right) \right|+\left[x+i\left(y+1 \right) \right]^2

Observe que fiquei com o módulo apenas no segundo termo do segundo membro da igualdade.

{x}^{2}+2xi\left(y-1 \right)+{i}^{2}\left(y-1 \right)^2=1-2\left|x+i\left(y+1 \right) \right|+{x}^{2}+2xi\left(y+1 \right)+{i}^{2}\left(y+1 \right)^2

Como: {i}^{2}= -1

{x}^{2}+2xi\left(y-1 \right)-\left(y-1 \right)^2=1-2\left|x+i\left(y+1 \right) \right|+{x}^{2}+2xi\left(y+1 \right)-\left(y+1 \right)^2

{x}^{2}+2xi\left(y-1 \right)-\left({y}^{2}-2y+1 \right)=1-2\left|x+i\left(y+1 \right) \right|+{x}^{2}+2xi\left(y+1 \right)-\left({y}^{2}+2y+1 \right)

{x}^{2}+2xi\left(y-1 \right)-{y}^{2}+2y-1 \right)=1-2\left|x+i\left(y+1 \right) \right|+{x}^{2}+2xi\left(y+1 \right)-y}^{2}-2y-1 \right)

Efetuando a simplificação:

2xi\left(y-1 \right)+2y-1 \right)=-2\left|x+i\left(y+1 \right) \right|+2xi\left(y+1 \right)-2y \right)

E aqui eu não consegui avançar no sentido de resolver o problema.
mota_16
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Dez 06, 2013 10:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Regular
Andamento: cursando

Re: [Números Complexos] Representação geométrica

Mensagempor e8group » Seg Dez 30, 2013 21:07

Boa noite. Um número complexo se escreve como z = a + ib (a,b reais) e seu valor absoluto é por definição |z| = \sqrt{a^2+b^2} ou |z|^2 =a^2+b^2. (Há um interpretação geométrica p/ isso,este abs pode ser encontrado via Teorema de Pitágoras ) .

Prosseguindo ...

z \in A \iff  |z-i| + |z+i| = 1 .Pondo z:= x + yi ; x,y \in \mathbb{R} ,resulta

|(x+yi)- i| + |(x+yi) + i| = 1 \iff  | x + (y-1)i| + | x + (1+y)i| = 1 (*) .

Seja z_1 = x + (y-1)i e z_2 = x + (1+y)i . Pelo que x,y-1,y+1 \in \mathbb{R} então z_1,z_2 \in \mathbb{C} e |z_1| = \sqrt{x^2 +(y-1)^2} , |z_2| = \sqrt{x^2 +(y+1)^2} .De (*) , temos

\sqrt{x^2 +(y-1)^2} + \sqrt{x^2 +(y+1)^2} = 1 \iff  \sqrt{x^2 +(y-1)^2} = 1 - \sqrt{x^2 +(y+1)^2} .

Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59