• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números complexos !

Números complexos !

Mensagempor Loretto » Seg Out 11, 2010 19:07

Os argumentos principais das soluções da equação em z;

iz + 3z* + (z + z*)² - i = 0 , PERTENCE A

A) ] Pi/4 ; 3 Pi / 4 [
B) ] 3 Pi / 4 ; 5 Pi / 4 [
C) ] 5 Pi / 4 ; 3 Pi / 2 [
D) ] Pi/4 ; Pi / 2 [ U ] 3 Pi/2 ; 7 Pi/4 [
E) ] 0 ; Pi/4 [ U ] 7 Pi/4 ; 2 PI [.



OBS : (z* = conjugado de z)
Loretto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Dom Jul 25, 2010 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: exatas
Andamento: cursando

Re: Números complexos !

Mensagempor MarceloFantini » Ter Out 19, 2010 18:02

Fazendo z = \cos \theta + i \sin \theta, fica:

iz + 3 \overline {z} + (z+ \overline {z})^2 -i = 0

i \cos \theta - \sin \theta + (3 \cos \theta - i 3 \sin \theta) + (\cos \theta + i \sin \theta + \cos \theta - i \sin \theta)^2 - i = 0

4 \cos^2 \theta + 3 \cos \theta - \sin \theta +i (\cos \theta -3 \sin \theta -1) = 0

Iguale a parte real e a parte imaginária a zero.

4 \cos^2 \theta +3 \cos \theta - \sin \theta = 0

\cos \theta -3 \sin \theta -1 = 0

Resolva, sabendo que 0 \leq \theta < 2 \pi:

Multiplicando a primeira por 3 e subtraindo da segunda:

12 \cos^2 \theta + 9 \cos \theta - 3 \sin \theta  - \cos \theta + 3 \sin \theta +1 =0

12 \cos^2 \theta +8 \cos \theta +1 = 0

\Delta = (8)^2 -4 \cdot 12 \cdot 1 = 64 -48 = 16

\cos \theta = \frac{-8 \pm 4}{24}

\cos \theta = - \frac{1}{2}

\cos \theta = - \frac{1}{6}

Agora é só ver os intervalos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)