Saudações à todos!
Estudando sobre o assunto cheguei a um exercício que pede o seguinte: Seja 'z' um número complexo tal que z = 2 + i2?3, z³ corresponde a que valor?
Bom no começo tentei colocar: (2 + i2?3)x(2 + i2?3)x(2 + i2?3), mas não bateu com a resposta do gabarito. Em seguida pesquisando na internet achei uma fórmula que dizia que para z³ teríamos: (a³ - 3ab²) + (3a²b - b³)i, mas também não consegui chegar a resposta do gabarito. A resposta que consta aqui é que o resultado é: 512 - i512?3.

utilizando o arranjo
, o que nos dá como resultado o valor real de -64, que pode ser conferido em ![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)