• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Justificar a afirmação

Justificar a afirmação

Mensagempor silvanuno11 » Sex Mai 25, 2012 12:45

Boa tarde,

Alguém me pode ajudar a resolver o seguinte exercício?

Obrigado
Abraço
Anexos
exe4.PNG
silvanuno11
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Mar 26, 2012 20:15
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: Justificar a afirmação

Mensagempor Guill » Dom Mai 27, 2012 21:58

Observe que:

{a}_{x} = \sum_{k=0}^{x}\binom{x}{k}(-1)^k.k

{a}_{x} = \sum_{k=0}^{x}\frac{x!}{k!(x-k)!}(-1)^k.k


Vale a pena notar que k = 0 ou k = 1 não tem diferença na somatória, já que no caso de k = 0, o valor é sempre nulo:

{a}_{x} = \sum_{k=1}^{x}\frac{x.(x - 1)!}{(k-1)!(x-k)!}(-1)^k

{a}_{x} = x.\sum_{k=1}^{x}\binom{x-1}{k-1}(-1)^{k-1}.(-1)

{a}_{x} = -x.\sum_{k=1}^{x}\binom{x-1}{k-1}(-1)^{k-1}


Observe esse binômio de Newton. Note que ele é (1 - 1)^{x-1}:

{a}_{x} = 0


Mas isso não é válido para x = 1, onde {a}_{1} = -1



Agora, desenvolvendo a próxima somatória:

\sum_{j=1}^{n-1}\binom{n}{j}(-1)^j.{a}_{j}

\sum_{j=2}^{n-1}\binom{n}{j}(-1)^j.{a}_{j} + \binom{n}{1}(-1)^1.(-1)

\binom{n}{1}(-1)^1.(-1) = n
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Justificar a afirmação

Mensagempor silvanuno11 » Seg Mai 28, 2012 06:36

Bom dia.

Obrigado pela ajuda. Foi importante.

Abraço.
silvanuno11
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Mar 26, 2012 20:15
Formação Escolar: SUPLETIVO
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59


cron