por Colton » Qui Mai 12, 2011 12:29
+
+
Estou me debatendo com o seguinte exercício (que vou digitar sem símbolos):
(Exercício 303 de Fundamentos de Matemática Elementar vol. 5, 7ª edição, página 75.)
Determine o valor de A(n) = somatório de p=0 até n de (Cn,p)[2^(p)3^(n-p)-4^p], para todo n > 0.
Entendo que o somatório proposto é igual a 2^n.
Entendo que [2^(p)3^(n-p)-4^p]pode ser reescrito como (2/3)^p3^n-4^p
Mas não sei o que fazer com (2^n)[(2/3)^p3^n-4^p] para obter A(n) = 0, que é o gabarito.
Tem alguém aí para me dar uma ajudinha?
Sds
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por LuizAquino » Ter Mar 13, 2012 20:55
Sei que essa dúvida é antiga (foi enviada no dia 12 de maio de 2011), mas segue a solução abaixo.
Colton escreveu:Estou me debatendo com o seguinte exercício (que vou digitar sem símbolos):
(Exercício 303 de Fundamentos de Matemática Elementar vol. 5, 7ª edição, página 75.)
Determine o valor de A(n) = somatório de p=0 até n de (Cn,p)[2^(p)3^(n-p)-4^p], para todo n > 0.
Entendo que o somatório proposto é igual a 2^n.
Entendo que [2^(p)3^(n-p)-4^p]pode ser reescrito como (2/3)^p3^n-4^p
Mas não sei o que fazer com (2^n)[(2/3)^p3^n-4^p] para obter A(n) = 0, que é o gabarito.
Primeiro, vamos escrever o exercício usando a notação adequada:

Agora, note que:





-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Binômio de Newton
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.