• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio bem dificil preciso de uma maozinha

exercicio bem dificil preciso de uma maozinha

Mensagempor Fabricio dalla » Ter Mar 15, 2011 15:21

calcule o termo independente de x no desenvolvimento de:

{(x+\frac{1}{x})}^{6}.{(x-\frac{1}{x})}^{6}


aquele ponto entre os parenteses e sinal de multiplicação
e tbm o grande responsavel pela dificuldade da questão!!


OBS:caros voluntarios ou responsaveis pelo site caso consigam resolver isso prometo que ficarei um bom tempo sem perguntar a vcs kkkk!! desde ja agradeço!!
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: exercicio bem dificil preciso de uma maozinha

Mensagempor LuizAquino » Ter Mar 15, 2011 18:46

Dicas
(i) Lembre-se da propriedade de potenciação: (a\cdot b)^n = a^n \cdot b^n .

(ii) Lembre-se do produto notável: (a-b)(a+b)=a^2-b^2 .

(iii) Lembre-se do binômio de Newton: (a+b)^n = \sum_{i=0}^{n} {n \choose i} a^{n-i}b^{i} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: exercicio bem dificil preciso de uma maozinha

Mensagempor Fabricio dalla » Sáb Mar 19, 2011 18:45

Tá no desenvolvimento meu que provavelmente ta errado fico:


({x+\frac{1}{x}})^{6}.({x-\frac{1}{x}})^{6}==>


({x})^{12}-({\frac{1}{x}})^{12}===>


({x})^{6}.({x})^{6}-({\frac{1}{x}})^{6}.({\frac{1}{x}})^{6}

onde: ({x})^{6}-({\frac{1}{x}})^{6}=({x+\frac{1}{x}})^{3}.({x-\frac{1}{x}})^{3}

tem-se: ({x})^{6}.({x+\frac{1}{x}})^{3}.({x-\frac{1}{x}})^{3}.({\frac{1}{x}})^{6}===>({{x}^{7}+{x}^{5}})^{3}.({\frac{1}{{x}^{5}}-\frac{1}{{x}^{7}}})^{3}

ta, se ta certo ou nao morri aqui!. Dá uma luz ai LuizAquino ou qualquer outro voluntario
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: exercicio bem dificil preciso de uma maozinha

Mensagempor LuizAquino » Sáb Mar 19, 2011 19:24

As dicas que dei são mais do que suficientes!

(i) Lembre-se da propriedade de potenciação: (a\cdot b)^n = a^n \cdot b^n .

{\left(x+\frac{1}{x}\right)}^{6}.{\left(x-\frac{1}{x}\right)}^{6} = \left[\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}\right)\right]^6

(ii) Lembre-se do produto notável: (a-b)(a+b)=a^2-b^2 .

\left[\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}\right)\right]^6 = \left(x^2-\frac{1}{x^2}\right)^6

(iii) Lembre-se do binômio de Newton: (a+b)^n = \sum_{i=0}^{n} {n \choose i} a^{n-i}b^{i} .

\left[x^2+\left(-\frac{1}{x^2}\right)\right]^6 = \sum_{i=0}^{6} {6 \choose i} \left(x^2\right)^{6-i}\left(-\frac{1}{x^2}\right)^{i}

Agora você tem que ser capaz de terminar a questão.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: exercicio bem dificil preciso de uma maozinha

Mensagempor Pedro123 » Sáb Mar 19, 2011 19:39

Fabricio, faça o seguinte, lembre que se temos:

{A}^{n} . {B}^{n} , isso é igual a {(A.B)}^{n} portanto :

{(x + \frac{1}{x})}^{6} .  {(x - \frac{1}{x})}^{6} = {[(x + \frac{1}{x}). (x + \frac{1}{x})]}^{6} = ({x}^{2} - \frac{1}{{x}^{2}})^{6}

agora utilizando as propriedades de Binômio de Newton:

{T}_{p + 1}= {{C}^{6}}_{p}. {{(x)}^{-2}}^{p} . {(x)}^{12 - 2p} . {(-1)}^{p} > {T}_{p + 1} = {{C}^{6}}_{p}.{(x)}^{12 - 4p}.{(-1)}^{p}

fazendo {(x)}^{12 - 4p} = {(x)}^{0} para encontrar o termo independente temos, desprezando as bases:

12- 4p = 0 > p = 3

agora na parte final :

{T}_{3 + 1} = {{C}^{6}}_{3} . {x}^{0} . {(-1)}^{3}

{T}_{3 + 1} = 20 . -1

{T}_{3 + 1} = -20
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: exercicio bem dificil preciso de uma maozinha

Mensagempor Fabricio dalla » Sáb Mar 19, 2011 20:38

è LuizAquino concordo com vc, errar produto notavel é inadmissivel :/
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}