• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de binomio de newton

Questão de binomio de newton

Mensagempor d7carvalho » Qua Set 22, 2010 00:48

Oi, pessoal,
Espero que me ajudem nessa:

Determine n e p inteiros, de modo que:

\frac{\left(\frac{n}{p} \right)}{1} = \frac{\left(\frac{n}{p + 1} \right)}{2} = \frac{\left(\frac{n}{p + 2} \right)}{3}


Aguardo ansiosamente.

Desde já, valeu!
d7carvalho
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Ago 28, 2010 23:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão de binomio de newton

Mensagempor alexandre32100 » Qui Set 23, 2010 21:46

\dfrac{\dbinom{n}{p}}{1}=\dfrac{\dbinom{n}{p+1}}{2}=\dfrac{\dbinom{n}{p+2}}{3}
Comparando os dois primeiros termos e usando a fórmula algébrica:
\dfrac{n!}{p!(n-p)!}=\dfrac{n!}{2(p+1)!(n-p-1)!}\iff \dfrac{n!}{p!(n-p)(n-p-1)!}=\dfrac{n!}{2(p+1)p!(n-p-1)!}
Simplificando...
\dfrac{1}{n-p}=\dfrac{1}{2(p+1)}\iff n-p=2p+2\iff n-3p=2
Da mesma forma
\dfrac{n!}{3(p+2)!(n-p-2)!}=\dfrac{n!}{2(p+1)!(n-p-1)!}\iff \dfrac{n!}{3(p+2)(p+1)!(n-p-2)!}=\dfrac{n!}{2(p+1)!(n-p-1)(n-p-2)!}
Simplificando novamente
\dfrac{1}{3(p+2)}=\dfrac{1}{2(n-p-1)}\iff3p+6=2n-2p-2\iff 2n-5p=8

Basta resolver o sistema abaixo
\begin{cases}n-3p=2\\ 2n-5p=8\end{cases}
E chegamos a n=14 e p=4.

Não sei se errei alguma passagem, revisa ae, se houver algum erro, avisa.
Na essência, é só isso ai.
Valeu.
alexandre32100
 


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.