• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Provar igualdade sem recorrer à Indução Matemática

Provar igualdade sem recorrer à Indução Matemática

Mensagempor EREGON » Ter Abr 14, 2015 06:29

Bom dia,

estou com dificuldades em efectuar esta prova sem recorrer à IM, no entanto tendo como suporte as matérias já dadas, como:

1 - Funções Injetivas, sobrejetivas e bijeticvas.
2 - Cardinalidades.
3 - Coeficientes binomiais.
4 - Permutações e combinações.
5 - Binomio de Newton, triangulo de pascal, lei de simetria, etc.

Tentei fazer este desenvolvimento que não sei se está correto, mas depois não consegui avançar mais *-) :
Anexos
CodeCogsEqn.gif
CodeCogsEqn.gif (3.02 KiB) Exibido 3423 vezes
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Provar igualdade sem recorrer à Indução Matemática

Mensagempor EREGON » Qui Abr 16, 2015 14:07

Olá boa tarde,

alguém me poderá auxiliar neste exercício?

Obrigado.
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Provar igualdade sem recorrer à Indução Matemática

Mensagempor e8group » Sex Abr 17, 2015 23:12

Podemos generalizar , computar \sum^n  k^\alpha \binom{n}{k} recursivamente em função das somas ]\sum^n  k^\zeta \binom{n}{k}   ;   0 \leq \zeta  < \alpha .

Defina , para \alpha , n \in \mathbb{Z}_{\geq 0 , \Lambda_n(\alpha) := \sum_{k=1}^n k^\alpha \binom{n}{k} .

Veja que \Lambda_n(0) =  2^n -1 (verifique ) . Fixe \mathbb{Z}_{\geq 0 }\ni n, \alpha > 0 arbitrariamente .

Para cada k \in \{1, \hdots , n \} , veja que


k^\alpha \binom{n}{k} = k^\alpha \frac{n!}{(n-k)!k!} = k^{\alpha -1}\frac{n!}{(n-k)!(k-1)!}  = n k^{\alpha -1}\frac{(n-1)!}{(n-k)!(k-1)!} =  n k^{\alpha -1}\frac{(n-1)!}{((n-1)-(k-1) )!(k-1)! } =  n k^{\alpha -1} \binom{n-1}{k-1} .

Pondo , p = k -1 , temos k^\alpha \binom{n}{k} =  n (p+1)^{\alpha -1 } \binom{n-1}{p}  ,     p \in \{0, \hdots , n-1\} .

Como ,

(p+1)^{\alpha -1 }  = \sum_{\zeta = 0}^{\alpha -1} p^\zeta \binom{\alpha -1}{\zeta } , substituindo na expressão acima , temos


k^\alpha \binom{n}{k}  = n \sum_{\zeta = 0}^{\alpha -1} p^\zeta \binom{\alpha -1}{\zeta } \binom{n-1}{p}  , p \in \{0, \hdots , n-1\} . Finalmente , substituindo esta expressão na soma , vem

\sum_{k=1}^n k^\alpha \binom{n}{k} =  \sum_{p=0}^{n-1}   n \sum_{\zeta = 0}^{\alpha -1} p^\zeta \binom{\alpha -1}{\zeta } \binom{n-1}{p}  = n \sum_{\zeta = 0}^{\alpha -1} \left(\sum_{p=0}^{n-1}  p^\zeta  \binom{n-1}{p}   \right) \binom{\alpha -1}{\zeta } = n+ n\sum_{\zeta = 0}^{\alpha -1} \left(\sum_{p=1}^{n-1}  p^\zeta  \binom{n-1}{p}   \right) \binom{\alpha -1}{\zeta }  = n+n\sum_{\zeta = 0}^{\alpha -1}  \Lambda_{n-1}(\zeta) \binom{\alpha -1}{\zeta } , ou seja


\Lambda_n(\alpha) = \boxed{n+ n \sum_{\zeta = 0}^{\alpha -1}  \Lambda_{n-1}(\zeta) \binom{\alpha -1}{\zeta }} .

Agora somos capazes facilmente , de computar por exemplo \Lambda_n(1) . De acordo com a formula acima ,


\Lambda_n(1) =n+ n \sum_{\zeta = 0}^{0}  \Lambda_{n-1}(\zeta) \binom{0}{\zeta }  = n+ n \Lambda_{n-1}(0) =  n+ n (2^{n-1} -1) = n2^{n-1} .

o exercício é um corolário do resultado acima ... Segue-se então que

\sum_{k=1}^n k^2 \binom{n}{k} =  \Lambda_n(2) = n+ n \sum_{\zeta = 0}^{1}  \Lambda_{n-1}(\zeta) \binom{1}{\zeta } = n+ n( \Lambda_{n-1}(0)+\Lambda_{n-1}(1) )  = n( 2^{n-1} + (n-1)2^{n-2}) =  n(n+1)2^{n-2} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: