• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação binomial

equação binomial

Mensagempor Direito » Dom Jun 01, 2014 01:05

(puc-sp) o valor de x na equação \left(\frac{2n}{n} \right)= x.\left(\frac{2n}{n-1} \right) é:


resposta : \frac{n+1}{n}

gostaria da resolução

agradeço a dedicação.
Direito
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 13, 2013 00:14
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equação binomial

Mensagempor DanielFerreira » Sáb Ago 12, 2017 18:30

\\ \mathsf{\binom{2n}{n} = x \cdot \binom{2n}{n - 1}} \\\\\\ \mathsf{\frac{(2n)!}{(2n - n)!n!} = x \cdot \frac{(2n)!}{(2n - n + 1)!(n - 1)!}} \\\\\\ \mathsf{\frac{1}{n!n!} = x \cdot \frac{1}{(n + 1)!(n - 1)!}} \\\\\\ \mathsf{\frac{1}{n!n \cdot (n - 1)!} = x \cdot \frac{1}{(n + 1) \cdot n!(n - 1)!}} \\\\\\ \mathsf{\frac{1}{\cancel{\mathsf{n!}}n \cdot \cancel{\mathsf{(n - 1)!}}} = x \cdot \frac{1}{(n + 1) \cdot \cancel{\mathsf{n!}}\cancel{\mathsf{(n - 1)!}}}} \\\\\\ \mathsf{\frac{1}{n} = \frac{x}{n + 1}} \\\\\\ \boxed{\mathsf{x = \frac{n + 1}{n}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1664
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)