• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação binomial

equação binomial

Mensagempor Direito » Dom Jun 01, 2014 01:05

(puc-sp) o valor de x na equação \left(\frac{2n}{n} \right)= x.\left(\frac{2n}{n-1} \right) é:


resposta : \frac{n+1}{n}

gostaria da resolução

agradeço a dedicação.
Direito
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 13, 2013 00:14
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equação binomial

Mensagempor DanielFerreira » Sáb Ago 12, 2017 18:30

\\ \mathsf{\binom{2n}{n} = x \cdot \binom{2n}{n - 1}} \\\\\\ \mathsf{\frac{(2n)!}{(2n - n)!n!} = x \cdot \frac{(2n)!}{(2n - n + 1)!(n - 1)!}} \\\\\\ \mathsf{\frac{1}{n!n!} = x \cdot \frac{1}{(n + 1)!(n - 1)!}} \\\\\\ \mathsf{\frac{1}{n!n \cdot (n - 1)!} = x \cdot \frac{1}{(n + 1) \cdot n!(n - 1)!}} \\\\\\ \mathsf{\frac{1}{\cancel{\mathsf{n!}}n \cdot \cancel{\mathsf{(n - 1)!}}} = x \cdot \frac{1}{(n + 1) \cdot \cancel{\mathsf{n!}}\cancel{\mathsf{(n - 1)!}}}} \\\\\\ \mathsf{\frac{1}{n} = \frac{x}{n + 1}} \\\\\\ \boxed{\mathsf{x = \frac{n + 1}{n}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1665
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.