• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação binomial

equação binomial

Mensagempor Direito » Dom Jun 01, 2014 01:05

(puc-sp) o valor de x na equação \left(\frac{2n}{n} \right)= x.\left(\frac{2n}{n-1} \right) é:


resposta : \frac{n+1}{n}

gostaria da resolução

agradeço a dedicação.
Direito
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 13, 2013 00:14
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equação binomial

Mensagempor DanielFerreira » Sáb Ago 12, 2017 18:30

\\ \mathsf{\binom{2n}{n} = x \cdot \binom{2n}{n - 1}} \\\\\\ \mathsf{\frac{(2n)!}{(2n - n)!n!} = x \cdot \frac{(2n)!}{(2n - n + 1)!(n - 1)!}} \\\\\\ \mathsf{\frac{1}{n!n!} = x \cdot \frac{1}{(n + 1)!(n - 1)!}} \\\\\\ \mathsf{\frac{1}{n!n \cdot (n - 1)!} = x \cdot \frac{1}{(n + 1) \cdot n!(n - 1)!}} \\\\\\ \mathsf{\frac{1}{\cancel{\mathsf{n!}}n \cdot \cancel{\mathsf{(n - 1)!}}} = x \cdot \frac{1}{(n + 1) \cdot \cancel{\mathsf{n!}}\cancel{\mathsf{(n - 1)!}}}} \\\\\\ \mathsf{\frac{1}{n} = \frac{x}{n + 1}} \\\\\\ \boxed{\mathsf{x = \frac{n + 1}{n}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.