• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão UECE 2012

Questão UECE 2012

Mensagempor Phaniemor » Qui Abr 18, 2013 11:33

Se o desenvolvimento de \right){\left(2x²+\frac{1}{x} \right)}^{n} possui 9 termos e um deles é 112.c.{x} \right)}^{7}, o valor de c será:
a)8
b)16
c)24
d)32

a expressão começa com 2x² + ...
Phaniemor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Abr 18, 2013 11:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Questão UECE 2012

Mensagempor DanielFerreira » Qui Abr 18, 2013 12:01

Phaniemor,
seja bem-vindo(a)!

Qual o número de termos de (a + b)^2? Três, certo?!

Qual o número de termos de (a + b)^3? Quatro, certo?!

Disso, podemos concluir que encontramos o número de termos somando UM ao expoente!!

Daí, se o número de termos é NOVE,temos:

\\ n + 1 = 9 \\ \boxed{n = 8}


Portanto, \left ( 2x^2 + \frac{1}{x} \right )^8.


Da fórmula \\ T_{p + 1} = \binom{n}{p} \cdot a^{n - p} \cdot b^p, tiramos:

Que a diferença entre os expoentes é 7, então:

\\ 2(n - p) - p = 7 \\ 2n - 2p - p = 7 \\ 16 - 7 = 3p \\ \boxed{p = 3}


Segue,

\\ T_{p + 1} = \binom{n}{p} \cdot a^{n - p} \cdot b^p \\\\\\ T_{3 + 1} = \binom{8}{3} \cdot \left ( 2x^2 \right )^{8 - 3} \cdot \left ( \frac{1}{x} \right )^3 \\\\\\ T_{3 + 1} = \frac{8 \cdot 7 \cdot \cancel{6} \cdot \cancel{5!}}{\cancel{3!} \cancel{5!}} \cdot \left ( 2x^2 \right )^5 \cdot x^{- 3} \\\\\\ T_{3 + 1} = 56 \cdot 32x^{10} \cdot \left x^{- 3}

\boxed{T_{3 + 1} = 1792x^7}


Por fim, resta-nos dividir o valor encontrado pelo que foi dado no enunciado, veja:

\\ \frac{1792x^7 }{112 \cdot c \cdot x^7} = \\\\\\ \frac{1792\cancel{x^7} }{112 \cdot c \cdot \cancel{x^7}} = \\\\\\ \frac{1792}{112c} = \\\\\\ \frac{16}{c}


Phaniemor escreveu:Se o desenvolvimento de \right){\left(2x²+\frac{1}{x} \right)}^{n} possui 9 termos e um deles é 112.c.{x} \right)}^{7}, o valor de c será:
a)8
b)16
c)24
d)32

a expressão começa com 2x² + ...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1678
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?