• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão (UEL)

Questão (UEL)

Mensagempor Jhennyfer » Sáb Mar 30, 2013 15:42

No calculo de (x²+xy)^15, o termo em que o grau de x é 21 vale:
Ps: a resposta é 5005x^21y^9, preciso de ajuda com a resolução
Att, Jhenny ;*
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão (UEL)

Mensagempor e8group » Sáb Mar 30, 2013 16:32

Observe que (x^2 + xy)^{15} = (x[x+y])^{15} = x^{15}[x+y]^15 .O termo em que o grau de x é grau 21 será o termo que contém "x de grau 6" de [x+y]^{15} .Logo pelo binômio de newton ,tiramos que o termo que possui x com grau 6 é \binom{15}{9} x^{15-9} \cdot y^{5}  =   \frac{15!}{9!(15-9)!}x^{6} \cdot y^5 .Multiplicando por x^{15} resulta \frac{15!}{9!(15-9)!}x^{21} \cdot y^5 .

Alternativamente , visto que (x^2 + xy)^15 = (x[x+y])^15 = x^15[x+y]^15 .Cada termo ou parcela do desenvolvimento (x+y)^{15} pelo binômio de newton pode ser escrito por \binom{15}{k} x^{15 -k} y^k para k = 0 , 1,2,3,...,15 .Assim , se k = 0 é o primeiro termo , k = 1 segundo termo e assim sucessivamente . Aplicando a distributiva de x^{15} sobre (x+y)^{15} expandido pelo binômio de newton ,cada parcela(ou termo ) será multiplicada(o) por x^{15} , então o mesmo será dado por \binom{15}{k} x^{30 -k} y^k . Fazendo 30 - k = 21 obtemos k = 9 . Segue então o resultado ..
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão (UEL)

Mensagempor Jhennyfer » Sáb Mar 30, 2013 19:43

Não compreendo como funciona essa parte de grau de x, podia me explicar melhor isso?
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão (UEL)

Mensagempor e8group » Sáb Mar 30, 2013 20:33

Digamos que x^k(k natural) ,o termo x possui grau k .Se queremos encontar o termo que o grau de x é 21 .Como ja temos x^{15} (o grau de x é 15) multiplicando (x+y)^{15}, a conclusão é que precisamos encontrar um termo de (x+y)^{15} em que o grau de x é 6 . Pois 6 + 15 = 21 , lembre-se em produto de potências de mesma base conserva a base e soma os expoentes . Assim, por exemplo : 2^4 \cdot 2^8  = 2^{4+8} = 2^{12} .Em resumo ao desenvolver (x+y)^{15} pelo binômio de newton precisamos encontar um termo que contém x de grau 6 ,isto é, x^6 (não importa o grau de y) por que x^{15} \cdot x^6 = x^{21} .Segue então que o termo que contém x com o grau 6 é \binom{15}{9} x^{15-9} \cdot y^{5} conforme eu já postei acima , inclusive uma solução alternativa .

Só por curiosidade com auxílio do site wolframalpha ,veja a forma expandida de (x+y)^{15} no seguinte link :

http://www.wolframalpha.com/input/?i=Ex ... y%29%5E15+

Lembrando que temos x^{15} multiplicando (x+y)^{15} temos então que em todas parcelas que contém a base x , o grau de x aumentará em 15 , estamos somando 15 no expoente da base x .

Conforme o link abaixo :

http://www.wolframalpha.com/input/?i=Ex ... y%29%5E15+

Se permanecer dúvidas retorne !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão (UEL)

Mensagempor Jhennyfer » Dom Mar 31, 2013 23:04

Muito obrigado, acabaram-se as minhas dúvidas em relação à este assunto.
Quanto ao desenvolvimento, estou bem resolvida, era só essa parte de grau mesmo que eu nunca tinha visto antes.
E o site wolframalpha eu já conhecia, uso sempre, mas valeu a dica! Abraços, e sucesso ;*
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.


cron