• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão (UEL)

Questão (UEL)

Mensagempor Jhennyfer » Sáb Mar 30, 2013 15:42

No calculo de (x²+xy)^15, o termo em que o grau de x é 21 vale:
Ps: a resposta é 5005x^21y^9, preciso de ajuda com a resolução
Att, Jhenny ;*
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão (UEL)

Mensagempor e8group » Sáb Mar 30, 2013 16:32

Observe que (x^2 + xy)^{15} = (x[x+y])^{15} = x^{15}[x+y]^15 .O termo em que o grau de x é grau 21 será o termo que contém "x de grau 6" de [x+y]^{15} .Logo pelo binômio de newton ,tiramos que o termo que possui x com grau 6 é \binom{15}{9} x^{15-9} \cdot y^{5}  =   \frac{15!}{9!(15-9)!}x^{6} \cdot y^5 .Multiplicando por x^{15} resulta \frac{15!}{9!(15-9)!}x^{21} \cdot y^5 .

Alternativamente , visto que (x^2 + xy)^15 = (x[x+y])^15 = x^15[x+y]^15 .Cada termo ou parcela do desenvolvimento (x+y)^{15} pelo binômio de newton pode ser escrito por \binom{15}{k} x^{15 -k} y^k para k = 0 , 1,2,3,...,15 .Assim , se k = 0 é o primeiro termo , k = 1 segundo termo e assim sucessivamente . Aplicando a distributiva de x^{15} sobre (x+y)^{15} expandido pelo binômio de newton ,cada parcela(ou termo ) será multiplicada(o) por x^{15} , então o mesmo será dado por \binom{15}{k} x^{30 -k} y^k . Fazendo 30 - k = 21 obtemos k = 9 . Segue então o resultado ..
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão (UEL)

Mensagempor Jhennyfer » Sáb Mar 30, 2013 19:43

Não compreendo como funciona essa parte de grau de x, podia me explicar melhor isso?
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão (UEL)

Mensagempor e8group » Sáb Mar 30, 2013 20:33

Digamos que x^k(k natural) ,o termo x possui grau k .Se queremos encontar o termo que o grau de x é 21 .Como ja temos x^{15} (o grau de x é 15) multiplicando (x+y)^{15}, a conclusão é que precisamos encontrar um termo de (x+y)^{15} em que o grau de x é 6 . Pois 6 + 15 = 21 , lembre-se em produto de potências de mesma base conserva a base e soma os expoentes . Assim, por exemplo : 2^4 \cdot 2^8  = 2^{4+8} = 2^{12} .Em resumo ao desenvolver (x+y)^{15} pelo binômio de newton precisamos encontar um termo que contém x de grau 6 ,isto é, x^6 (não importa o grau de y) por que x^{15} \cdot x^6 = x^{21} .Segue então que o termo que contém x com o grau 6 é \binom{15}{9} x^{15-9} \cdot y^{5} conforme eu já postei acima , inclusive uma solução alternativa .

Só por curiosidade com auxílio do site wolframalpha ,veja a forma expandida de (x+y)^{15} no seguinte link :

http://www.wolframalpha.com/input/?i=Ex ... y%29%5E15+

Lembrando que temos x^{15} multiplicando (x+y)^{15} temos então que em todas parcelas que contém a base x , o grau de x aumentará em 15 , estamos somando 15 no expoente da base x .

Conforme o link abaixo :

http://www.wolframalpha.com/input/?i=Ex ... y%29%5E15+

Se permanecer dúvidas retorne !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão (UEL)

Mensagempor Jhennyfer » Dom Mar 31, 2013 23:04

Muito obrigado, acabaram-se as minhas dúvidas em relação à este assunto.
Quanto ao desenvolvimento, estou bem resolvida, era só essa parte de grau mesmo que eu nunca tinha visto antes.
E o site wolframalpha eu já conhecia, uso sempre, mas valeu a dica! Abraços, e sucesso ;*
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.


cron