• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(MACK) Considere a equação...

(MACK) Considere a equação...

Mensagempor manuoliveira » Sáb Jun 05, 2010 15:29

(MACK) Considere a equação \left( \begin{array}{ccc}
5 \\
0 \\
\end{array} \right) (x - 2)^5 + \left( \begin{array}{ccc}
5 \\
1 \\
\end{array} \right) (x - 2)^4 + \left( \begin{array}{ccc}
5 \\
2 \\
\end{array} \right) (x - 2)^3 + ... + \left( \begin{array}{ccc}
5 \\
5 \\
\end{array} \right) = (7x - 13)^5 então (x - 2)^6 vale:

Resposta: 0
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: (MACK) Considere a equação...

Mensagempor Mathmatematica » Dom Jun 06, 2010 21:13

Olá Manoel Oliveira! Vamos tentar resolver esse problema.

\left(\begin{array}{ccc}5\\0 \end{array}\right)(x-2)^5+\left(\begin{array}{ccc}5\\1 \end{array}\right)(x-2)^4+\cdots +\left(\begin{array}{ccc}5\\5 \end{array}\right)(x-2)^0=(7x-13)^5\Longleftrightarrow

\Longleftrightarrow \sum^5_{p=0}\left(\begin{array}{ccc}5\\p \end{array}\right)(x-2)^{5-p}1^p=(7x-13)^5

Nós sabemos que \sum^n_{p=0}\left(\begin{array}{ccc}n\\p \end{array}\right)a^{n-p}b^p=(a+b)^n. Então, da equação acima, temos:

(x-2+1)^5=(7x-13)^5\Longleftrightarrow (x-1)^5=(7x-13)^5

Como a potência é ímpar, não precisamos nos preocupar com módulo. Então:

x-1=7x-13\Longrightarrow 6x=12 \Longrightarrow x=2

Estamos procurando o valor de (x-2)^6. Substituindo o valor de x encontrado, nessa expressão, temos que (x-2)^6=(2-2)^6=0.

Observações:
_Qualquer erro, por favor, AVISEM!!!
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.