• Anúncio Global
    Respostas
    Exibições
    Última mensagem

UNIFOR - CE

UNIFOR - CE

Mensagempor Jhonatan » Dom Out 30, 2016 10:55

A soma (30) + 2(30) + (30) é igual a :
_______(8)____(9)___(10)


R: (32)
__(10)

Pessoal, estou começando agora com Binômio de Newton.
Poderiam me esclarecer como faço para resolver esse modelo de questão ?
Muito obrigado.
Jhonatan
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jul 07, 2016 10:24
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UNIFOR - CE

Mensagempor DanielFerreira » Dom Out 30, 2016 22:47

Olá Jhonatan, seja bem-vindo!

Inicialmente, devemos expandir o binômio do meio,veja:

\\ \mathsf{\binom{30}{8} + 2 \cdot \binom{30}{9} + \binom{30}{10} =} \\\\\\ \mathsf{\binom{30}{8} + \binom{30}{9} + \binom{30}{9} + \binom{30}{10} =}

Por conseguinte, aplica-se a Relação de Stifel:

\\ \mathsf{\forall \ n, k \in \mathbb{N}, \ tal \ que \ 1 \leq k \leq n \ tem-se:} \\\\ \mathsf{\binom{n - 1}{k - 1} + \binom{n - 1}{k} = \binom{n}{k}}

Irei somar os dois termos iniciais... O restante será com você, ok?!

Segue,

\\ \mathsf{\binom{30}{8} + \binom{30}{9} =} \\\\\\ \mathsf{\binom{30}{9}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1645
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: UNIFOR - CE

Mensagempor Jhonatan » Dom Out 30, 2016 23:12

Muito obrigado por sua ajuda, amigo.
Vou tentar terminar aqui.
Jhonatan
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jul 07, 2016 10:24
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UNIFOR - CE

Mensagempor DanielFerreira » Sáb Dez 17, 2016 22:25

DanielFerreira escreveu:Olá Jhonatan, seja bem-vindo!

Inicialmente, devemos expandir o binômio do meio,veja:

\\ \mathsf{\binom{30}{8} + 2 \cdot \binom{30}{9} + \binom{30}{10} =} \\\\\\ \mathsf{\binom{30}{8} + \binom{30}{9} + \binom{30}{9} + \binom{30}{10} =}

Por conseguinte, aplica-se a Relação de Stifel:

\\ \mathsf{\forall \ n, k \in \mathbb{N}, \ tal \ que \ 1 \leq k \leq n \ tem-se:} \\\\ \mathsf{\binom{n - 1}{k - 1} + \binom{n - 1}{k} = \binom{n}{k}}

Irei somar os dois termos iniciais... O restante será com você, ok?!

Segue,

\\ \mathsf{\binom{30}{8} + \binom{30}{9} =} \\\\\\ \boxed{\mathsf{\binom{30}{9}}}


Há um erro na última linha...

O correto seria: \Large \mathbf{\binom{31}{9}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1645
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?