• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(UCSAL-BA)num intendo essa questão

(UCSAL-BA)num intendo essa questão

Mensagempor natanskt » Sáb Dez 11, 2010 21:12

o termo independente de x no desenvolvimento de (\frac{3}{2}.x^2-\frac{1}{3x})^6
nem vou colocar alternativas,só que quero saber como começa,eu fiz varias dessas questões,só que não tinha o x^2 multiplicando,eu queria saber o que fazer com ele.
se eu multiplico por 3 ficaria 3x^2/2 isso procede? só quero intender o começo.valeu
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (UCSAL-BA)num intendo essa questão

Mensagempor DanielFerreira » Sáb Mar 03, 2012 23:11

natanskt escreveu:o termo independente de x no desenvolvimento de (\frac{3}{2}.x^2-\frac{1}{3x})^6
nem vou colocar alternativas,só que quero saber como começa,eu fiz varias dessas questões,só que não tinha o x^2 multiplicando,eu queria saber o que fazer com ele.
se eu multiplico por 3 ficaria 3x^2/2 isso procede? só quero intender o começo.valeu

\begin{pmatrix}
   6  \\ 
   0 
\end{pmatrix} . (\frac{3}{2}x^2)^6 . (\frac{1}{3x})^0 + \begin{pmatrix}
   6  \\ 
   1 
\end{pmatrix} . (\frac{3}{2}x^2)^5 . (\frac{1}{3x})^1 + ... + \begin{pmatrix}
   6  \\ 
   6 
\end{pmatrix} . (\frac{3}{2}x^2)^0 . (\frac{1}{3x})^6

Vc deverá encontrar os expoentes de x de modo que a soma resulte zero (nulo).

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} = \frac{n!}{(n - p)!p!} = \frac{6.5.4!}{2! 4!} = \frac{6.5}{2.1} = 15

(\frac{3x^2}{2})^2 = \frac{9x^4}{4}

(\frac{1}{3x})^4 = \frac{1}{81x^4}


\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = 15 . \frac{9x^4}{4} . \frac{1}{81x^4} =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = 15 . \frac{1}{4} . \frac{1}{9} =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = 5 . \frac{1}{4} . \frac{1}{2} =

\begin{pmatrix}
   6  \\ 
   4 
\end{pmatrix} . (\frac{3}{2}x^2)^2 . (\frac{1}{3x})^4 = \frac{5}{8}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.