• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Combinatória

Combinatória

Mensagempor nathyn » Ter Jul 10, 2012 20:09

oIE, gostaria de uma ajudinha com essa questão, o q significa dizer que um algarismo figura ou não??
Acredito que se eu souber isso talvez consiga resolver. Obrigada

Questão:
1-) Quantos são os números de 5 algarismos, na base 10:
a)nos quais o algarismo 2 figura?
b)nos quais o algarismo 2 não figura?
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Combinatória

Mensagempor fraol » Qui Jul 12, 2012 22:41

Figura nesse contexto quer dizer "faz parte" ou "está entre" ou algo semelhante. Em outras palavras o exercício está pedindo quantos são números de 5 algarismos nos quais o 2 é um desses algarismos (figura) e, também, quantos são os números de 5 algarismos nos quais o 2 não é um desses algarismos (não figura).

Vamos tentar a letra
a) nos quais o algarismo 2 figura?
:

Queremos contar os números de 5 algarismos que contém o 2 em uma de suas posições.
O enunciado não cita que os algarismos devem ser distintos, então podemos repetir algarismos.

Como são 5 algarismos então o 0 (zero) não pode estar na primeira posição, o 2 pode estar em qualquer posição.

Se o 2 estiver na 1a. posição então temos 1 x 10 x 10 x 10 x 10 números de 5 algarismos.

Se o 2 estiver na 2a. posição então temos 8 x 1 x 10 x 10 x 10 números de 5 algarismos.

Se o 2 estiver na 3a. posição então temos 8 x 10 x 1 x 10 x 10 números de 5 algarismos.

Se o 2 estiver na 4a. posição então temos 8 x 10 x 10 x 1 x 10 números de 5 algarismos.

Se o 2 estiver na 5a. posição então temos 8 x 10 x 10 x 10 x 1 números de 5 algarismos.

A quantidade de números de 5 algarismos contendo o 2 é a soma das 5 parcelas acima.

Tente resolver o item b. Se necessitar de ajuda volte a postar.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Combinatória

Mensagempor fraol » Sex Jul 13, 2012 10:48

Como podemos repetir os algarismos, então no caso do item a) o 2, em particular, pode aparecer repetido em qualquer posição, então, por favor, considere esse novo desenvolvimento:

Como são 5 algarismos então o 0 (zero) não pode estar na primeira posição, o 2 pode estar em qualquer posição.

Se o 2 estiver na 1a. posição então temos 1 x 10 x 10 x 10 x 10 números de 5 algarismos.

Se o 2 estiver na 2a. posição então temos 9 x 1 x 10 x 10 x 10 números de 5 algarismos.

Se o 2 estiver na 3a. posição então temos 9 x 10 x 1 x 10 x 10 números de 5 algarismos.

Se o 2 estiver na 4a. posição então temos 9 x 10 x 10 x 1 x 10 números de 5 algarismos.

Se o 2 estiver na 5a. posição então temos 9 x 10 x 10 x 10 x 1 números de 5 algarismos.

A quantidade de números de 5 algarismos contendo o 2 é a soma das 5 parcelas acima.

A quantidade 9 na primeira posição acima significa que só o 0 (zero) não pode figurar nessa posição. O 2 pode, pois podemos repetir algarismos.

Tente resolver o item b. Se necessitar de ajuda volte a postar.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Combinatória

Mensagempor nathyn » Sex Jul 13, 2012 13:51

Muito brigada fraol, mas eu fiz as contas e somando tudo eu encontro 46.000 como resposta,
mas o gabarito do meu livro diz q é 37.512 =(.
Tentei fazer contando como se os algarismos precisassem ser diferentes mas achei como resposta 13776 , eu fiz dessa forma, se vc puder ajudar, dá uma olhada, possa ser q eu tenha feito errado...

Se o 2 estiver na 1a. posição então 1 x 9 x 8 x 7 x 6 números de 5 algarismos.

Se o 2 estiver na 2a. posição então 8 x 1 x 8 x 7 x 6 números de 5 algarismos.

Se o 2 estiver na 3a. posição então 8 x 8 x 1 x 7 x 6 números de 5 algarismos.

Se o 2 estiver na 4a. posição então 8 x 8 x 7 x 1 x 6 números de 5 algarismos.

Se o 2 estiver na 2a. posição então 8 x 8 x 7 x 6 x 1 números de 5 algarismos.

Somei tudo: 3024 + 2688 + 2688 + 2688 + 2688 =13776 =/
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Combinatória

Mensagempor jqc25 » Dom Abr 30, 2017 15:46

Olá.
Pensa assim...
Quantos são os números de 5 algarismos?
9x10x10x10x10=90000

Quantos são os números em que não aparece o número 2?

8x9x9x9x9=52488

Logo, o resultado é a quantidade total de números com 5 algarismos menos os números de 5 algarismos que não possuem o 2...

90000-52488=37512

Espero ter ajudado,

Abraço.
jqc25
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 19, 2017 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciências Militares
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D