• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Combinações

Combinações

Mensagempor Leone de Paula » Ter Mai 22, 2012 00:03

Cinco pessoas encontram-se sentadas em volta de uma mesa redonda. De quantas maneiras diferentes elas podem torcar de lugar entre si de modo que pelo menos uma delas termine com pelo menos um de seus vizinhos sentado em outra posição em relação a ela?

a - 20
b - 21
c - 22
d - 23
e - 24

Ps.: Não consegui interpretar bem essa questão, se alguém poder esclarecê-la, agradeço.
Leone de Paula
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Jun 16, 2010 22:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: formado

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.