• Anúncio Global
    Respostas
    Exibições
    Última mensagem

analise combinatoria probabilidade

analise combinatoria probabilidade

Mensagempor silvia fillet » Sex Mai 11, 2012 20:45

Um experimento consiste em lançar dois dados comuns de 6 faces, até que a soma obtida seja 5. Seja A o evento em que são feitos no máximo dois lançamentos dos dois dados. Suponha que são registrados os pares obtidos em cada lançamento. Defina o espaço amostral Ω e descreva o evento A como subconjunto de Ω. Quantos elementos tem o conjunto A?
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: analise combinatoria probabilidade

Mensagempor debeta56 » Sex Mai 11, 2012 22:01

silvia fillet escreveu:Um experimento consiste em lançar dois dados comuns de 6 faces, até que a soma obtida seja 5. Seja A o evento em que são feitos no máximo dois lançamentos dos dois dados. Suponha que são registrados os pares obtidos em cada lançamento. Defina o espaço amostral Ω e descreva o evento A como subconjunto de Ω. Quantos elementos tem o conjunto A?


Os elementos do espaço amostral são todos os pares formados pela associação de todos os numeros das faces num total de 36 pares. Já A ?
debeta56
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 01, 2012 09:37
Formação Escolar: PÓS-GRADUAÇÃO
Andamento: cursando

Re: analise combinatoria probabilidade

Mensagempor silvia fillet » Sex Mai 11, 2012 22:11

Só isso, mas como formular?
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: analise combinatoria probabilidade

Mensagempor Fabiano Vieira » Sex Mai 11, 2012 23:13

Levando em conta que não importa se no lançamento sairá (2-1) ou (1-2). Assim, o espaço amostral dos pares:

(1-1)(1-2)(1-3)(1-4)(1-5)(1-6)
(2-2)(2-3)(2-4)(2-5)(2-6)
(3-3)(3-4)(3-5)(3-6)
(4-4)(4-5)(4-6)
(5-5)(5-6)
(6-6)

Em um lançamento temos dois casos possíveis: sair os pares(1-4) e (2-3).

Em dois lançamentos temos apenas um caso possível: sair (1-1)(1-2).

Temos então 4 elementos no conjunto A. Silva, você tem a resposta, só para confirmar ?
Fabiano Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Abr 16, 2012 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando

Re: analise combinatoria probabilidade

Mensagempor debeta56 » Sáb Mai 12, 2012 10:20

Minha dúvida ainda é se tenho que considerar 1 só caso no caso de (1,4) e (2,3) no caso de dois lançamentos (1,1)((1,2) pois meu espaço é de 36 possibilidades e ainda tenho (2,1)(1,1) assim como também tenho (4,1) e (3,2)?
debeta56
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 01, 2012 09:37
Formação Escolar: PÓS-GRADUAÇÃO
Andamento: cursando

Re: analise combinatoria probabilidade

Mensagempor Fabiano Vieira » Sáb Mai 12, 2012 13:07

debeta56 escreveu:Minha dúvida ainda é se tenho que considerar 1 só caso no caso de (1,4) e (2,3) no caso de dois lançamentos (1,1)((1,2) pois meu espaço é de 36 possibilidades e ainda tenho (2,1)(1,1) assim como também tenho (4,1) e (3,2)?


Também tenho essa dúvida.

Mas pense bem, para isso os dados teriam que ser distintos(tipo: dado 1 e dado 2). Porque ao jogar dois dados iguais, como iriamos distinguir (2-1) ou (1-2).
Fabiano Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Abr 16, 2012 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando

Re: analise combinatoria probabilidade

Mensagempor debeta56 » Sáb Mai 12, 2012 17:12

Voce tem razão. Vou pensar mais um pouco, obrigado.
debeta56
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 01, 2012 09:37
Formação Escolar: PÓS-GRADUAÇÃO
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}