por dodoido13 » Dom Mar 25, 2012 14:58
Um sargento tem 5 livros diferentes de Direito Militar e 5
livros diferentes sobre investigação. Ele deseja colocar 3
livros de Direito e 4 livros sobre investigação na prateleira
de uma estante. Diante do exposto, assinale a alternativa
que apresenta de quantas maneiras ele pode fazer isso,
de modo que os livros de mesmo assunto (direito ou
investigação) fiquem juntos.
(A) 50.
(B) 100.
(C) 150.
(D) 200.
Amigos tentei a resolução do exercicio, por regra de permutação mas não consigo chegar ao resultado, me ajudem por muito agradeço
-
dodoido13
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Mar 25, 2012 14:47
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: concurso para Cabo PM
- Andamento: cursando
por Guill » Dom Mar 25, 2012 18:29
Podemos fazer separado, e depois multiplicar os valores.
No caso dos 5 livros de Direito Militar, temos que colocar 3 deles na prateleira. Nesse caso a resposta seria 5.4.3. No entanto, se colocarmos três livros quaisquer, existem 6 órdens diferentes para cada livro. Portanto, a órdem verdadeira é 5.4.3/6 = 10
No caso dos 5 livros sobre investigação temos 5.4.3.2/24 = 5
Agora, basta multiplicar as possibilidades 10.5 = 50
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Me ajudem
por geriane » Qui Abr 22, 2010 16:01
- 1 Respostas
- 2840 Exibições
- Última mensagem por Molina

Qui Abr 22, 2010 20:48
Desafios Fáceis
-
- me ajudem ai !!
por weverton » Ter Jun 15, 2010 23:45
- 1 Respostas
- 1644 Exibições
- Última mensagem por Mathmatematica

Qua Jun 16, 2010 01:18
Sistemas de Equações
-
- me ajudem ai!!!
por weverton » Qui Jul 08, 2010 17:15
- 2 Respostas
- 8416 Exibições
- Última mensagem por Lucio Carvalho

Qui Jul 08, 2010 19:50
Estatística
-
- me ajudem
por weverton » Qui Out 07, 2010 17:34
- 1 Respostas
- 1667 Exibições
- Última mensagem por MarceloFantini

Qui Out 07, 2010 18:07
Geometria Analítica
-
- me ajudem
por weverton » Seg Nov 08, 2010 16:11
- 7 Respostas
- 3970 Exibições
- Última mensagem por MarceloFantini

Qua Nov 10, 2010 01:43
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.