• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Probabilidade] Exercício Desafio de Probabilidade

[Probabilidade] Exercício Desafio de Probabilidade

Mensagempor werwer » Qua Mar 21, 2012 18:57

Seja E um experimento binário aleatório. Ep corresponde ao experimento composto por p repetições sucessivas e independentes de E.
Seja S o número de vezes em que, nessas p repetições, o resultado foi positivo.

(Exemplo, seja E o experimento aleatório que corresponde ao lançamento de uma moeda, sendo Coroa positivo, e Cara falso.
Se Ep, p=4, obteve os resultados {Cara, Coroa, Coroa, Coroa}, S = 3)

Seja Ep, como definido acima, com p desconhecido. Para se estimar p, a ideia é fazer n repetições independentes de Ep, guardando em X o total de S. O estimador de p é, então, p'= x/n . Se, após 10000 repetições, você obteve X=1280, então sua estimativa de p é p' = 1280/10000 = 0,1280. Você sabe que sua estimativa tem um erro, cuja magnitude você desconhece. Use a Desigualdade de Tchebychev para estabelecer um limite inferior para o seu nível de confiança de que o erro absoluto é |p' - p| inferior a 0,01
werwer
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mar 21, 2012 18:55
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.


cron