• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória (Arranjo)

Análise Combinatória (Arranjo)

Mensagempor Anderson Alves » Dom Mar 11, 2012 22:35

Olá pessoal.
Tenho dúvida nesta questão.

Em uma cidade, as placas são formadas por 3 letras e 4 dígitos. Com as vogais do alfabeto e com os algarismos de 3 a 9, quantas placas
diferentes, com elementos distintos e pares poderão ser feitas?

Resp.: 21600
Confesso, não cheguei a essa resposta, pois sim, muito diferente

Ficarei grato pela ajuda....
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado

Re: Análise Combinatória (Arranjo)

Mensagempor fraol » Dom Mar 11, 2012 23:13

São 5 vogais e 7 dígitos.

As placas deverão ter o formato V V V D D D D , com vogais distintas e dígitos distintos, então:

Primeira vogal = 5 possibilidades
Segunda vogal = 4 possibilidades
Terceira vogal = 3 possibilidades

Primeiro dígito = 7 possibilidades
Segundo dígito = 6 possibilidades
Terceiro dígito = 5 possibilidades
Quarto dígito = 4 possibilidades

Portanto: 5 x 4 x 3 x 7 x 6 x 5 x 4 = 50400.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}