• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual o numero de palavras que podem ser transmitidas?

Qual o numero de palavras que podem ser transmitidas?

Mensagempor andersontricordiano » Qui Dez 01, 2011 14:33

Durante um exercício da Marinha de Guerra, empregaram-se sinais luminosos
para transmitir o código Morse. Este código só emprega duas letras (sinais): ponto e
traço. As palavras transmitidas tinham de uma a seis letras. O número de palavras que
podiam ser transmitidas é:

Resposta : 126
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Qual o numero de palavras que podem ser transmitidas?

Mensagempor TheoFerraz » Qui Dez 01, 2011 15:18

esse tipo de problema é classico... é como o problema duma sala com varias lampadas que podem ficar acesas ou apagadas... ou aquele das abelhas que podem ser macho ou femea, em fim... voce tem duas opçoes se intercalando... pode ser ou pto, ou traço... duas opções...

Se eu quero saber quantas opçoes eu tenho numa palavra de 3 letras, eu faço {2}^{3}

se eu quiser uma palavra de "n" letras {2}^{n}

por que ?

no caso das 3 letras é por que na primeira casa eu tenho 2 opçoes... na segunda também duas, e na terceira duas tbm... dai 2 \times 2 \times 2

e no caso das "n" é análogo...

se eu preciso saber quantas palavras eu tenho com uma quantidade de letras que seja de uma até 3 eu tenho que somar a quantidade de palavras com uma, à quantidade de palavras com duas, à quantidade de palavras com 3...

se eu preciso da quantidade de palavras possiveis com um numero de 1 até "n" letras eu tenho que somar todas as possbilidades de palavras de 1 letra, depois de 2, depois de 3 depois 4 ... até chegar em n

Baseado nisso, tente fazer o exercicio.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}