• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Principio fundamental da contagem (I)

Principio fundamental da contagem (I)

Mensagempor my2009 » Ter Mai 10, 2011 19:51

Numa cidade,os números de telefone são formados de um prefixo de 3 algarismos,seguidos de outros 4 algarismos.O primeiro algarismo do prefixo é sempre um elemento do conjunto {2,3,5,6,7,8,9} os demais algarismos são quaisquer.Nessas condições quer- se saber

a)Quantos telefones podem ser instalados nessa cidade?
b) quantos números de telefone tem os 4 algarismos finais distintos?
c) quantos números de telefone tem o primeiro dos 4 algarismos diferente de zero ?
d) Quantos números de telefone tem os 4 algarismos finais distintos e o primeiro desses 4 diferente de zero?

Bem.. eu fiz o seguinte :

a) como o primeiro algarismo deve ser um elemento do conjunto temos 7 possibilidades Então 7.10^6 = 7.000.000

b) eu tinha feito assim : 7. 10.9.8.7 mas no gabarito está 7.10^3.9.8.7 = 3.528.000 alguém pode me explicar?

c) a letra " c e d" eu não entendi nada...
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 105
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Principio fundamental da contagem (I)

Mensagempor MarceloFantini » Ter Mai 10, 2011 21:38

a) Certo.

b) Esqueceu de duas letras.

c) Quando for pensar nos quatro algarismos finais, tire a possibilidade de zero no primeiro e mantenha os outros. Assim: 7 \cdot 10 \cdot 10 \cdot 9 \cdot 10 \cdot 10 \cdot 10 = 6300000

d) Considerando os quatro últimos, temos 9 possibilidades para o primeiro, 9 possibilidades para o segundo (pois o zero pode voltar a ser utilizado, mas um destes já foi escolhido), 8 para o terceiro e 7 para o último.
7 \cdot 10 \cdot 10 \cdot 9 \cdot 9 \cdot 8 \cdot 7
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59