• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Principio fundamental da contagem (I)

Principio fundamental da contagem (I)

Mensagempor my2009 » Ter Mai 10, 2011 19:51

Numa cidade,os números de telefone são formados de um prefixo de 3 algarismos,seguidos de outros 4 algarismos.O primeiro algarismo do prefixo é sempre um elemento do conjunto {2,3,5,6,7,8,9} os demais algarismos são quaisquer.Nessas condições quer- se saber

a)Quantos telefones podem ser instalados nessa cidade?
b) quantos números de telefone tem os 4 algarismos finais distintos?
c) quantos números de telefone tem o primeiro dos 4 algarismos diferente de zero ?
d) Quantos números de telefone tem os 4 algarismos finais distintos e o primeiro desses 4 diferente de zero?

Bem.. eu fiz o seguinte :

a) como o primeiro algarismo deve ser um elemento do conjunto temos 7 possibilidades Então 7.10^6 = 7.000.000

b) eu tinha feito assim : 7. 10.9.8.7 mas no gabarito está 7.10^3.9.8.7 = 3.528.000 alguém pode me explicar?

c) a letra " c e d" eu não entendi nada...
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 105
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Principio fundamental da contagem (I)

Mensagempor MarceloFantini » Ter Mai 10, 2011 21:38

a) Certo.

b) Esqueceu de duas letras.

c) Quando for pensar nos quatro algarismos finais, tire a possibilidade de zero no primeiro e mantenha os outros. Assim: 7 \cdot 10 \cdot 10 \cdot 9 \cdot 10 \cdot 10 \cdot 10 = 6300000

d) Considerando os quatro últimos, temos 9 possibilidades para o primeiro, 9 possibilidades para o segundo (pois o zero pode voltar a ser utilizado, mas um destes já foi escolhido), 8 para o terceiro e 7 para o último.
7 \cdot 10 \cdot 10 \cdot 9 \cdot 9 \cdot 8 \cdot 7
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}