• Anúncio Global
    Respostas
    Exibições
    Última mensagem

estrutura de contagem

estrutura de contagem

Mensagempor benni » Qui Abr 14, 2011 16:29

Utilizando argumento combinatorio, mostre que :
\begin{pmatrix}
   n &   \\ 
   k &  
\end{pmatrix} =  \begin{pmatrix}
   n -1 &   \\ 
   n - k &  
\end{pmatrix}

ou seja mostre que cada lado da igualdade representa uma forma de contar a mesma coisa.
Ajuda Please.
benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: estrutura de contagem

Mensagempor FilipeCaceres » Qui Abr 14, 2011 20:18

Ola benni,

Eu não cheguei a calcular nada ainda, mas só por descargo de consciência, esta escrito correto, pois ela se parece muito com as combinações complementares
C_n^p=C_n^{n-p}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: estrutura de contagem

Mensagempor benni » Sex Abr 15, 2011 21:03

Perdão realmente esqueci de colocar na frente do 1° parentese a letra k e na frente do segundo a letra n , tentei resolver pela relação de Fermat , mas não deu certo .
benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: estrutura de contagem

Mensagempor benni » Seg Abr 18, 2011 22:59

Equação( I)
= k.\frac{n!}{(n-k)!}= \frac{kn!}{k(n-k)!}=\frac{n!}{(n-k)!}
Equação( II)
\frac{n(n-1)}{n-k}=\frac{n(n-1)!}{(n-k)!}= \frac{n!}{(n-k)!}
assim ,
comparando (I)=(II) caracterristica dos numeros binomiais combinados.
benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}