• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória

Análise Combinatória

Mensagempor Rejane Sampaio » Qua Set 17, 2008 15:52

Você faz parte de um grupo de 7 pessoas para os quais são sorteados 3 prêmios diferentes. Se cada pessoa não pode receber mais que um prêmio, o número de possibilidades que você tem de ser premiado é? Resp-15

eu tenho o cálculo dessa questão, foi feito por combinação C6,2 = 6/2! (4!)= 15, porém não entendi pq C6,2, alguém pode me explicar?
Rejane Sampaio
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Set 12, 2008 22:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Análise Combinatória

Mensagempor Molina » Sex Set 19, 2008 22:20

Rejane Sampaio escreveu:Você faz parte de um grupo de 7 pessoas para os quais são sorteados 3 prêmios diferentes. Se cada pessoa não pode receber mais que um prêmio, o número de possibilidades que você tem de ser premiado é? Resp-15

eu tenho o cálculo dessa questão, foi feito por combinação C6,2 = 6/2! (4!)= 15, porém não entendi pq C6,2, alguém pode me explicar?


Boa noite.

Vamos por parte. De início 4!\neq15
Quanto ao resultado ser 15, você tem certeza disso?
Vou tentar fazer e assim que conseguir posto aqui.

Bom estudo!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Análise Combinatória

Mensagempor fabiosousa » Ter Set 23, 2008 18:01

Olá Rejane!


Molina, sobre o fatorial, parece que a Rejane quis escrever assim:

C_{6,2} = \frac{6!}{2! \cdot 4!} = 15

Pensei no problema e comento o seguinte:

Como pede-se o "número de possibilidades que você tem de ser premiado", dentre as 7 pessoas, de início já consideramos uma pessoa com prêmio, você.

Então, os 2 prêmios restantes ficarão entre as 6 pessoas restantes.

Refazendo a pergunta, temos: de quantas maneiras os 2 prêmios podem ser sorteados entre as 6 pessoas?
Daí a combinação C_{6,2}.

Note que aqui pode haver outra dúvida que é a seguinte:
Por que não arranjos A_{6,2}, já que os prêmios são diferentes, e a ordem fará diferença para os premiados? :)
Pois é, a ordem dos 2 outros prêmios fará diferença para os 6 outros premiados, mas não para você.


Mas agora, eu deixo outra dúvida pendente: o número de possibilidades ainda não teria que ser multiplicado por 3 (ou somado 3 vezes)?

C_{6,2} são as possibilidades de premiação caso você receba um prêmio do tipo 1 (sendo distribuídos os prêmios 2 e 3).
ou
C_{6,2} são as possibilidades de premiação caso você receba um prêmio do tipo 2 (sendo distribuídos os prêmios 1 e 3).
ou
C_{6,2} são as possibilidades de premiação caso você receba um prêmio do tipo 3 (sendo distribuídos os prêmios 1 e 2).

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 881
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Análise Combinatória

Mensagempor Rejane Sampaio » Qui Set 25, 2008 10:43

Obrigada pela ajuda! :y: através dessas possibilidades já posso fazer uma outra análise da questão.
Rejane Sampaio
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Set 12, 2008 22:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?