• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória

Análise Combinatória

Mensagempor Rejane Sampaio » Sex Set 12, 2008 23:20

Por favor, me ajude com essa questão.

Transpetro- 2006 Em um posto de observação foi montado um sinaleiro de formato pentagonal e em cada um de seus vertices foram colocadas duas lâmpadas de cores distintas, escolhidas entre 5 vermelhas e 5 verdes. Convenciona-se que, para a transmissão de uma mensagem, não pode ser acesa mais do que uma lâmpada por vértice, e que o número mínimo de vértices iluminados deve ser três. Se, cada vez que um conjunto de lâmpadas é aceso, transmite-se uma mensagem, o total de mensagens que podem ser transmitidas por esse sinaleiro é: resp- 192
Rejane Sampaio
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Set 12, 2008 22:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Análise Combinatória

Mensagempor fabiosousa » Ter Set 16, 2008 20:07

Olá Rejane Sampaio, boas-vindas!

Sugiro dividir em 3 casos: 3 vértices acesos, 4 vértices acesos e 5 vértices acesos.
Lembrando que um vértice aceso significa uma única lâmpada acesa no vértice correspondente.

Para simplificar, considere a seguinte nomeação:
A: vértice com uma lâmpada vermelha acesa;
B: vértice com uma lâmpada verde acesa;

Caso 1) 3 vértices acesos
1A e 2B = C_{5,1} \cdot C_{4,2}
2A e 1B = C_{5,2} \cdot C_{3,1}
3A = C_{5,3}
3B = C_{5,3}

Caso 2) 4 vértices acesos
1A e 3B = C_{5,1} \cdot C_{4,3}
2A e 2B = C_{5,2} \cdot C_{3,2}
3A e 1B = C_{5,3} \cdot C_{2,1}
4A = C_{5,4}
4B = C_{5,4}

Caso 3) 5 vértices acesos
1A e 4B = C_{5,1} \cdot C_{4,4}
2A e 3B = C_{5,2} \cdot C_{3,3}
3A e 2B = C_{5,3} \cdot C_{2,2}
4A e 1B = C_{5,4} \cdot C_{1,1}
5A = C_{5,5}
5B = C_{5,5}

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Análise Combinatória

Mensagempor Rejane Sampaio » Qua Set 17, 2008 12:43

muito obrigada Fábio, agora entendi. Mas achei essa questão bem complicada!
Rejane Sampaio
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Set 12, 2008 22:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Análise Combinatória

Mensagempor Angela Aguiar » Sex Abr 13, 2012 21:32

Fabiosousa,


Boa noite, tenho uma dúvida na sua resolução.
Quando você cita a combinação envolvendo as lâmpadas verdes "B", você considerou 4 luzes, num universo de 5, e, ainda, foi reduzindo para 3, 2..., ou seja, n=4 e não n=5. O mesmo não aconteceu com a lâmpadass vermelhas "A" , essas você considerou n=5.
Não consegui enxergar no enunciado nada que me indicasse esse passo.
Vou abusar de seu conhecimento e fazer mais uma pergunta. É possível a resolução por meio da permutação circular com repetição? Obrigada
Angela Aguiar
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Abr 13, 2012 21:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Direito
Andamento: formado

Re: Análise Combinatória

Mensagempor Neilson » Ter Mai 01, 2012 01:23

no caso dessa questao, quando estao os 5 vertices acesos, considerando que existam 4 luzes vermelhas acesas, haverá 1 verde acesa (4A e 1B), 3 vermelhas implicarão em 2verdes (3A e 2B) e assim por diante (2A e 3B, 1A e 4B).

quando vc calcula a combinação de se ter uma lampada acesa de uma cor das 5 lampadas possiveis, sobram depois apenas 4 outras lampadas para 4 posições possiveis, não importando a ordem em q elas aparecerão, por isso nao cabe aqui usar permutação circular

espero ter ajudado
Neilson
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mai 01, 2012 00:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: