• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(( Analise combinatória ))

(( Analise combinatória ))

Mensagempor Roberta » Dom Jul 13, 2008 17:28

olá pessoal! :mrgreen:

Vcx poderiam me ajudar a resolver esta questão de Análise Comb?
Eu só não tenho a resposta :-P

Um grupo de 8 pessoas se hospedará em um hotel. De quantas formas elas poderão se arrumar, sendo 3 no quarto 2A, 3 no quarto 2B e 2 no quarto 2C?

a) 2.320 b)7.560 c)980 d) 1.120 e)3.680

Eu tentei C8,3 x C5,3 x C2,2 = 560 :-(
Mesmo sem fazer sentido, tentei A8,3 x A5,3 X A2,2 = 40.320 (muito...)
Tb tentei P3 x P3 x P2 X P3 = 432 :-(
Só pra não dizer que não tentei tudo... 2 x C8,3 x C8,2 = 3136 :-(


*** Ah.. outra perguntinha:
Em permutações circulares existe uma fórmula diferenciada se houver repetição de elementos??????

Obrigada! :mrgreen:
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: (( Analise combinatória ))

Mensagempor fabiosousa » Dom Jul 13, 2008 19:23

Olá Roberta!

Sobre a sua outra pergunta, não é algo trivial.
Localizei uma discussão interessante, seguem os links, veja na seqüência:
http://www.mat.puc-rio.br/~obmlistas/ob ... 00171.html
http://www.mat.puc-rio.br/~obmlistas/ob ... 00187.html
http://www.mat.puc-rio.br/~obmlistas/ob ... 00194.html
http://www.mat.puc-rio.br/~obmlistas/ob ... 00211.html



Quanto ao problema, acredito que a idéia de sua primeira tentativa seja mesmo a base da resolução.
Adicionalmente, as 3 pessoas dos 56 modos para 2A, podem trocar de quarto com as 3 pessoas dos 10 modos do quarto 2B. Então, ainda temos o dobro das possibilidades calculadas, ou seja, 1120.
Para o quarto 2C continuará restando apenas um modo.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: (( Analise combinatória ))

Mensagempor Roberta » Dom Jul 13, 2008 19:36

Obrigada pela ajuda, Fábio!

:mrgreen:
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: (( Analise combinatória ))

Mensagempor paulo testoni » Qua Out 01, 2008 11:35

Hola fabiosouza.

Colocando as 8 pessoas no quarto 2C, teríamos: C8,2 = 28 formas de alojá-los.
Para cada uma dessas 28 combinações teríamos para o quarto 2B:
C6,3 = 20 forma de alojá-los, que dariam 28*20 = 560 maneiras já que o quarto 2A ficaria automaticamente defenido. Portanto, se vc colocar as 8 pessoas no quarto 2A teremos: C8,3 = 56 e colocando 5 pessoas no quarto 2B teremos:
C5,3 = 10, e pelo princípio multiplicativo teremos: 56*10 = 560 formas de alojá-los, já que o quarto 2C se define por si só.
Vc disse:
Adicionalmente, as 3 pessoas dos 56 modos para 2A, podem trocar de quarto com as 3 pessoas dos 10 modos do quarto 2B. Então, ainda temos o dobro das possibilidades calculadas, ou seja, 1120.
Procedendo assim vc estará contando cada pessoa duas vezes. A Roberta deve ter digitado a alternativa errada ou a fonte dela estava errada. A resposta é 560.
paulo testoni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 44
Registrado em: Ter Set 30, 2008 11:24
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: (( Analise combinatória ))

Mensagempor Roberta » Qua Out 01, 2008 12:06

oi Paulo Testoni!! :-)
Acabo de ver sua resposta à minha pergunta. Mesmo tendo passado tanto tempo é sempre bom ler outra opinião a respeito. Vi o seu comentário ...

A Roberta deve ter digitado a alternativa errada ou a fonte dela estava errada. A resposta é 560.
Hola fabiosouza.


É bem possível. Hoje não estou com o material em mãos. Mas verificarei e assim que possível e volto para colocar um comentário. Lembro que, antes do meu post, tico e teco (meus neurônios) brigaram muito sem chegar a um acordo a respeito desta questão... rsss

Obrigada pelo comentário!!
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: (( Analise combinatória ))

Mensagempor paulo testoni » Qua Out 01, 2008 15:21

Hola fabiosouza.

Estava olhando por acaso esse fórum quando me deparei com essa questão. O interessante é que parte da alternativa b)7.560 corresponde a resposta correta. Acredito que realmente o seu tico e teco tenham se confundido. O resto é só alegria.
paulo testoni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 44
Registrado em: Ter Set 30, 2008 11:24
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: (( Analise combinatória ))

Mensagempor Roberta » Qua Out 01, 2008 15:25

kkkkkkkkkkkkk :lol:
O resto é só alegria.
:party:

:lol: :lol: :lol:

:-) Roberta
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: (( Analise combinatória ))

Mensagempor fabiosousa » Qua Out 01, 2008 15:43

Olá paulo testoni!
Boas-vindas e obrigado pela correção!

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: (( Analise combinatória ))

Mensagempor Aparecida » Sáb Mai 05, 2012 00:07

OLA PESSOAL, ALGUEM PODERIA ME AJUDAR?
1. Um lote contém 12 itens bons e 8 itens defeituosos. Uma amostra de 5 itens é extraída. Determine o total de amostras contendo exatamente 3 itens bons.
Aparecida
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Dom Out 30, 2011 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59


cron