• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade :-)

Probabilidade :-)

Mensagempor Roberta » Qui Jun 26, 2008 21:53

ola! :mrgreen:
Gostaria de pedir a ajuda do *pessoal* para a resolução (de forma bem simples) do seguinte problema:

Temos quatro urnas, cada uma contendo dez bolas numeradas de 0 a 9. Sorteando ao acaso uma bola de cada uma, formamos um número entre 0 e 9999. Lembrando que zero é multiplo de qualquer número inteiro, determine a probabilidade de o número sorteado ser múltiplo de 8.

a) 7,8%
b) 8.5%
c) 13%
d) 12,5%
e) 15,5%

O gabarito eu tenho... levei horas pra fazer ... e tentar estabelecer uma sequência lógica para os múltiplos de 8. Mas gostaria de saber qual a forma simples e rápida que vcs usariam para resolver, caso fosse uma questão de prova?

Obrigada!!
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: Probabilidade :-)

Mensagempor Molina » Sex Jun 27, 2008 00:29

Boa noite, Roberta.
Tudo bem?

Eu faria da segunte maneira:
A quantidade de urnas nao nos importa, o importante mesmo sao os números que elas podem formas. Temos as possibilidades de 0 à 9999, ou seja, dez mil possibilidades.
Segundo passo é ver quanto múltiplos de 8 existem entre 0 e 9999. Basta dividir 9999 por 8 e pegar o número inteiro (1249). Só que o problema relembra que o 0 é múltiplo de todos os números, ou seja, 1249 + 1 = 1250.

Em probabilidade temos que quocientar o número de evento que desejamos pelo número de eventos possíveis. Nessas condições teríamo:
\frac{{n}_{p}}{{N}_{A}}=\frac{1250}{10000}=0,125
Ou seja, 12,5%

(não consegui fazer o símbolo do % no LaTeX)

Bom estudo!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Probabilidade :-)

Mensagempor Roberta » Sex Jun 27, 2008 01:21

Nosssssssssssssssssssssss... molina! :mrgreen:

Valeu mesmo! vc precisa ver qtos cálculos inúteis eu fiz!! kkkkkkkkkkk :o
E obtive numero de multiplos diferente deste... deu 2.750 :-( :?:

mas estes cálculos fazem mais sentido!
VlW!!
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.