• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Porcentagem] Voltar ao Valor Original

[Porcentagem] Voltar ao Valor Original

Mensagempor megalos » Ter Jun 26, 2018 16:56

Ola amigos e amigas, podem me ajudar com uma duvida.

Eu consegui fazer o calculo nas cochas, mas queria saber o modo correto de faze-lo e se houver um nome para esse tipo de calculo gostaria de conhece-lo.

Ex:
Um produto custa R$128,00 reais qual a Porcentagem que tenho que Subtrair que somando 37% sempre vai dar R$128,00

"Cheguei" no valor assim:

128/47,36 = 2,702702703 * 10

Onde 128 é o valor cheio do Produto e 47,36 o valor dos 37% e o *10 foi gambiarra

Descobri que qualquer numero que eu somar 27,02702703% vai equivaler a 37% da subtração do valor final

Esses 27% acertei na tentativa e erro, queria saber como fazer esse calculo de forma correta.
megalos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jun 26, 2018 16:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Porcentagem] Voltar ao Valor Original

Mensagempor Gebe » Ter Jun 26, 2018 19:00

Talvez eu tenha entendido errado, se sim me corrija. O que entendi foi:
Temos 128 reais, subtraimos uma certa porcentagem e então somamos 37% (37% referente ao 128-x%). Tudo isso deve resultar 128 reais.
Se for isso será:

\\
128-\left( \frac{128}{100}*x \right)+\left(\frac{128-\left( \frac{128}{100}*x \right)}{100} \right)*37=128\\
\\

Perceba que temos os 3 termos na esquerda: 128 (valor inicial), a subtração de uma certa porcentagem de 128 e a soma de 37% do novo valor.
Resolvendo:
\\
\frac{-128x+37*\left(128-1.28x \right)}{100}=0\\
\\
-175.36x = -4736\\
\\
x = 27.007

Se tiver ficado alguma duvida pode mandar msg.
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 95
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: [Porcentagem] Voltar ao Valor Original

Mensagempor megalos » Qua Jun 27, 2018 16:34

É meio difícil explicar quando não se conhece os termos corretos, mas como a equação que passou deu 27,007 e não 27,02 acredito que não seja oque preciso

Vou colocar no contexto talvez ajude a ficar mais claro.

Eu tenho um programa que adiciona automaticamente 37% ao valor de todo produto que cadastro, se eu quiser que o preço final dele seja 128, quantos % eu tenho que abaixar de 128 para que esse valor se mantenha no final.

Já consegui achar o numero (27,02), mas queria mesmo era entender como é feito esse calculo de forma correta, como se chama e coisa assim, tentei por regra de três mas não consegui achar a lógica para chegar no numero.

Acredito que agora tenha ficado mais fácil entender, mas caso não explico melhor.
megalos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jun 26, 2018 16:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Porcentagem] Voltar ao Valor Original

Mensagempor Gebe » Qua Jun 27, 2018 21:34

Desculpa o mal entendido, mas constinuo entendendo o problema da seguinte forma:
Seja "INICIAL" o valor inicial do produto que tu tem.
Seja "FINAL" o valor do produto oferecido ao cliente.
Queremos INICIAL igual a FINAL, obedecendo o fluxo:

INICIAL -> Redução percentual (?%) -> Aumento de 37% (cadastramento) -> FINAL
Novamente se não for isso, peço desculpas, no entanto se for isso o valor que tu quer (redução percentual) é sim 27.007% ou, mais especificalmente, (3700/137)%.
Basta testar. Por exemplo, um produto no valor de R$ 231.49.

231.49 -> redução de 27.007% --> 168.97 --> aumento de 37% --> 231.49
outro:
R$ 139 --> redução de 27.007% --> 101.46 --> aumento de 37% --> 139

Mostrei na outra resposta o calculo especifico para o valor de 18 reais, porem podemos fazer de uma forma mais geral, veja:
Seja "y" o valor do produto inicial (e, consequentemente, o valor final), "x" o percentual de redução.
\\
y - x*\left(\frac{y}{100} \right)+\left(y - x*\left(\frac{y}{100} \right) \right)*\frac{37}{100}=y\\
\\
Isolando\;y:
\\
y*\left(1-\frac{x}{100}+\frac{37}{100}-x\frac{37}{100*100} \right)=y\\
\\
\\
\left(1-\frac{x}{100}+\frac{37}{100}-x\frac{37}{100*100} \right)=\frac{y}{y}\\
\\
\\
-\frac{x}{100}+\frac{37}{100}-x\frac{37}{100*100} = 0\\
\\
\\
\frac{-100x+3700-x}{10000}=0\\
\\
-137x = -3700\\
\\
x = \frac{3700}{137}=27.00729927
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 95
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: [Porcentagem] Voltar ao Valor Original

Mensagempor megalos » Qui Jun 28, 2018 14:13

Você esta certíssimo, esse resultado que chegou é muita mais preciso que oque eu tinha obtido. Acho que fiz a conferencia errada da primeira vez.

Qual seria a forma mais básica para saber essa porcentagem x usando só a porcentagem de acréscimo que no caso era 37%

Pelo oque entendi será sempre essa relação

25%
2500/125=20%

12%
1200/112=10,71428571428571

Mas deve ter um modo mais, simples, não?

Vc manda muito bem, parabéns!
megalos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jun 26, 2018 16:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Porcentagem] Voltar ao Valor Original

Mensagempor Gebe » Sex Jun 29, 2018 00:17

megalos escreveu:Você esta certíssimo, esse resultado que chegou é muita mais preciso que oque eu tinha obtido. Acho que fiz a conferencia errada da primeira vez.

Qual seria a forma mais básica para saber essa porcentagem x usando só a porcentagem de acréscimo que no caso era 37%

Pelo oque entendi será sempre essa relação

25%
2500/125=20%

12%
1200/112=10,71428571428571

Mas deve ter um modo mais, simples, não?

Vc manda muito bem, parabéns!


Só uma correção, na minha resposta anterior esqueci um "37" na antepenultima linha. O certo é (-100x+3700-37x)/10000 = 0, mas apenas esqueci de escrever, o desenvolvimento está certo.
Sobre seu ultimo questionamento, sim é essa relação mesmo.
A relação pode ser escrita como:
Sendo "P" a porcentagem de acrescimo (o equivalente ao 37%) e "x" a porcentagem de redução (como feito no desenvolvimento anterior)

x=\frac{100*P}{100+P}
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 95
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.


cron