• Anúncio Global
    Respostas
    Exibições
    Última mensagem

intervalo de confiança

intervalo de confiança

Mensagempor ezidia51 » Ter Jun 19, 2018 14:06

Como posso fazer estes problemas de intervalo de confiança?Por favor me ajudem

O intervalo de confiança para proporção de alunos aprovados no vestibular, considerando um nível de confiança de 99%, é apresentado a seguir. Sabendo que a amostra incluía 1000 alunos, quantos alunos foram aprovados?
Limite inferior: 0,799
Limite superior: 0,847

Considere o seguinte intervalo de confiança da média de uma população, cujo desvio padrão é conhecido e calculado considerando um nível de confiança de 95%:
Limite inferior: 80
Limite superior: 99
Qual o valor da média?
s
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}