• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Variáveis Aleatórias] Esperança Matemática

[Variáveis Aleatórias] Esperança Matemática

Mensagempor guisore_09 » Ter Dez 29, 2015 08:58

Prezados, bom dia.

Estou estudando para uma prova de mestrado a qual aborda assuntos diversos em estatistica. Ao entrar em vaiaveis aleatorias me deparei com uma duvida constante na resolução de exericios que envolvem a maximização/minimização do valor esperado.

Meu maior problema está em encontrar a melhor ou a unica forma de fazer essa maximização. Tentei encontrar os valores derivando, fazendo comparações quando é acrescido uma unidade, pro diferença e de qualquer outro jeito que possam imaginar mas minha dificuldade persiste nesse tipo de problema.

Segue um exemplo (gostaria de, se possivel, postar outros para que eu posso entender a forma de resolver esse tipo de exercicio e possa tentar por conta propria em outros)

"Um jornaleiro compra jronais por 10 centavos e vende-os por 15 centavos. Entretanto, ele não pode retornar os jornais que não tiver vendido. Se sua demanda diária for uma variavel aleatoria binomial com n=10, p= 1/3, aproximademente quantos jornais ele deve comprar de forma a maximizar o lucro esperado?"

Muito obrigado. Agradeço se alguem tiver alguma dica para resolução desse tipo de exercicio também. Obrigado.
guisore_09
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Dez 29, 2015 08:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Atuaria
Andamento: formado

Re: [Variáveis Aleatórias] Esperança Matemática

Mensagempor Lucio Carvalho » Sex Jan 01, 2016 17:56

Olá guisore,
Segue,em anexo, uma ajuda.
Espero que ajude!
Anexos
Jan_01_18_34-page-001.jpg
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

[Variáveis Aleatórias] Esperança Matemática

Mensagempor guisore_09 » Sáb Jan 02, 2016 10:01

Lucio,

Muito obrigado pela ajuda!! Com certeza ajudou muito.

Uma dúvida, você teria uma sugestão para casos em que não seja possivel "fazer testes"?

Por exemplo para os casos abaixo:

EX1: Suponha que dois times joguem uma série de partidas que termina quando um deles tiver ganhado “i” partidas. Suponha que cada partida jogada seja, independentemente, vencida pelo time A com probabilidade p. Determine o número esperado de partidas jogadas quando (a) i = 2 (b) i = 3. Também, mostre em ambos os casos que este número é maximizado quando p=1/2.

Comentário: Fica evidente que, por exemplo, para (a) a V.A. X (número de partidas jogadas) assume os valores 2 ou 3, com probabilidade p² e 2*p² *(1 - p). Contudo depois que que obtenho a função que representa a esperança, a maximização não fica claro para mim.


EX2: A cada noite diferentes meteorologistas nos dão a probabilidade de chuva no dia seguinte. Para julgar quão boa é a previsão do tempo feita por essas pessoas, vamos classifica-las de forma a seguir: se um meteorologista diz que choverá com probabilidade p, então ele ou ela receberá uma nota de:

1 – (1 – p)² - se chover
1 – p² - se não chover

Vamos então anotar as notas ao longo de um determinado período de tempo e concluir que o meteorologista com a maior nota média é aquele que melhor prevê o tempo. Suponha agora que certo meteorologista esteja ciente de nosso mecanismo de notas e queira maximizar sua nota esperada. Se essa pessoa acredita verdadeiramente que choverá amanhã com probabilidade p*, que valor de p ele ou ela deve declarar de forma a maximizar a nota esperada?

De novo, muito obrigado pela ajuda.

Atenciosamente,

Guilherme
guisore_09
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Dez 29, 2015 08:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Atuaria
Andamento: formado

Re: [Variáveis Aleatórias] Esperança Matemática

Mensagempor Lucio Carvalho » Dom Jan 03, 2016 07:08

Olá Guilherme,
Segue, em anexo, a minha análise do exercício Ex.1 a)
Não estou muito certo se a maneira que usei para analisar o exercício é a mais adequada.
Espero que existam outras contribuições.
Anexos
Ex1a.png
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

[Variáveis Aleatórias] Esperança Matemática

Mensagempor guisore_09 » Dom Jan 03, 2016 10:20

Prezados,

Muito Obrigado pela ajuda e pelos comentários.

Acabei encontrando a forma de resolver os dois exercicios (Segue a resolução do exercicio das partidas dos dois times). Para i=3 é só repetir o mesmo raciocinio.

Além dessa forma, é possível resolve-lo tendo em mente que dado que X e Y são variaveis aleatórias com distribuição de probabilidade de uma binomial negativa, a esperança de ambas serão dada por: E[X] = r/p e E[Y] = r/(1-p) em que "r" é o número de sucessos (i = 2 ou i = 3). Após fazer a soma das esperanças, é só derivar e igualar a zero a derivada, obtendo o ponto de máximo quando p = 1/2.

Assim que colocar no papel a resolução do exercicio dos meteorologistas, posto aqui.

Até mais.
Anexos
IMG_20160103_100258811.jpg
Exercicio das partidas
guisore_09
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Dez 29, 2015 08:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Atuaria
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}