• Anúncio Global
    Respostas
    Exibições
    Última mensagem

UNIFEI 2006- Probabilidade

UNIFEI 2006- Probabilidade

Mensagempor Luiz C » Qua Jan 13, 2010 23:50

Olá,
O esquema da figura abaixo mostra três componentes elétricos C1, C2 e C3, ligados em série.
Observou-se que um ou mais elementos podiam falhar aleatoriamente e ao mesmo tempo.

----------C1--------------C2-----------------C3------------
Testes mostraram que a probabilidade de falha em cada um deles é Pc1 = 0,1; Pc2 = 0,2 e Pc3 = 0,3, respectivamente. Qual é a probabilidade de falha do sistema elétrico?
Resposta:
P = Pc1 + Pc2 + Pc3 - P(c1\capc2) - P(c1\capc3) - P(c2\capc3) + P(c1\capc2\capc3)

No caso, está incluido a probabilidade de cada componente falhar menos a chance de falha de dois componentes, entretanto porque somou-se P(c1\capc2\capc3)?
P = 0,6 - 0,11 + 0,006 = 0,496 = 49,6%
Obrigado.
Luiz C
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 06, 2009 18:40
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Eletroeletronica
Andamento: formado

Re: UNIFEI 2006- Probabilidade

Mensagempor MarceloFantini » Qui Jan 14, 2010 02:49

Boa noite Luiz!

Eu faria assim: para que o circuito inteiro não funcione, basta que apenas um elemento falhe, pois eles estão em série (o circuito ficaria aberto e portanto não formaria corrente).

Eu pegaria todos os casos (probabilidade igual a um) menos os casos em que todos os elementos funcionam. Assim:



Cálculo da probabilidade de todos funcionarem:

P(\mbox{todos funcionarem}) = P(\mbox{C1 funcionar}) \times P(\mbox{C2 funcionar}) \times P(\mbox{C3 funcionar})

P(\mbox{todos funcionarem}) = 0,9 \times 0,8 \times 0,7

P(\mbox{todos funcionarem}) = 0,504

Finalmente:





Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: UNIFEI 2006- Probabilidade

Mensagempor Luiz C » Qui Jan 14, 2010 17:35

Ajudou sim! Obrigado!
Luiz C
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 06, 2009 18:40
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Eletroeletronica
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59