por NerdCid » Qua Fev 13, 2013 20:19
Ola pessoal, sou um novato aqui no site, e ja venho com uma dúvida. Parece meia óbvia, mas por mais que seja ainda é uma dúvida, então vamos la. O problema é o seguinte:
Efetuar a média Geométrica dos seguintes termos ( 2, 4, 6, e 9)
![\sqrt[4]{2.4.6.9} \sqrt[4]{2.4.6.9}](/latexrender/pictures/5e472b785379271174199e4f8d39d2c4.png)
Fazendo a decomposição, eu encontro os segiuntes números:
![\sqrt[4]{2.2.2.2.3.3.3} \sqrt[4]{2.2.2.2.3.3.3}](/latexrender/pictures/a243464b5b5908c9022fa1c369a66729.png)
E organizando os fatores comuns em forma de potencia eu encontro:
![\sqrt[4]{{2}^{4}.{3}^{3}} \sqrt[4]{{2}^{4}.{3}^{3}}](/latexrender/pictures/c837f86f4a931ccc9d9e668d9067d4a8.png)
Agora, é que vem o "problema". Daqui para frente realmente não lembro como proceder. Sei que isso resultaria em uma raíz de índice 4 e radicando 432, e o resultado é 4,559..porém não quero so a resposta, gostaria do desenvolvimento, pois vou prestar concurso e preciso saber fazer isso sem calculadora...por mais complicado que seja, eu farei, mas se alguém puder ajudar ficarei grato.
Um abraço
-
NerdCid
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Fev 13, 2013 19:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Gestão em Petróleo e Gás
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Me ajudem por favor.
por diegodalcol » Qui Mai 22, 2008 13:26
- 4 Respostas
- 5008 Exibições
- Última mensagem por admin

Qui Mai 22, 2008 16:33
Funções
-
- Por favor, ajudem-me!
por hindu » Qua Set 23, 2009 23:08
- 4 Respostas
- 4771 Exibições
- Última mensagem por Lucas Avilez

Ter Out 06, 2009 20:36
Cálculo: Limites, Derivadas e Integrais
-
- M ajudem por favor!!
por Biacbd » Seg Jan 18, 2010 15:39
- 0 Respostas
- 3467 Exibições
- Última mensagem por Biacbd

Seg Jan 18, 2010 15:39
Lógica
-
- Me ajudem por favor!!
por Biacbd » Dom Jan 17, 2010 23:32
- 1 Respostas
- 3777 Exibições
- Última mensagem por CrazzyVi

Ter Jan 19, 2010 16:43
Lógica
-
- Por favor me ajudem!!
por Anderson POntes » Qui Ago 19, 2010 17:01
- 2 Respostas
- 2277 Exibições
- Última mensagem por Anderson POntes

Qui Ago 19, 2010 22:39
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.