• Anúncio Global
    Respostas
    Exibições
    Última mensagem

matemática financeira / Juros compostos

matemática financeira / Juros compostos

Mensagempor Roberta » Sex Jul 11, 2008 21:00

Olá a todos!! :-)

Queria ajuda do pessoal para resolver esta questão :shock:

Augusto emprestou R$ 30.000,00 a César, à taxa de juros de 10% ao mês. Eles combinaram que o saldo devedor seria
calculado a juros compostos no número inteiro de meses e, a seguir, corrigido a juros simples, com a mesma taxa de
juros, na parte fracionária do período, sempre considerando o mês com 30 dias. Para quitar a dívida 2 meses e 5 dias após o empréstimo, César deve pagar a Augusto, em reais,
(A) 39.930,00
(B) 39.600,00
(C) 37.026,00
(D) 36.905,00
(E) 36.300,00

Como estabelecer os valores ? Não sei por onde começar... :?

Obrigada !!!
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: matemática financeira / Juros compostos

Mensagempor admin » Sex Jul 11, 2008 22:16

Olá Roberta!

Comece calculando o montante M após 2 meses, partindo do capital C, com a taxa de juros compostos i de 10%:

M = C \left( 1 + \frac{i}{100}\right)^n

Depois, encontre a taxa i_2 proporcional aos 5 dias. Faça uma regra de três:

\left\{
\begin{matrix}
\text{30 dias} & & 10\% \\
\text{5 dias} & & i_2 \\
\end{matrix}
\right.

Corrija o montante M com esta taxa de juros simples.

Dica: utilize C = 30, no final, multiplique o montante por 1000.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: matemática financeira / Juros compostos

Mensagempor Roberta » Sex Jul 11, 2008 22:53

Vlw Fábio!
Obrigada!! :-)
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: matemática financeira / Juros compostos

Mensagempor admin » Sáb Jul 12, 2008 00:11

Também acho interessante comentar sobre esta conhecida "fórmula" para juros compostos...
Uma vez entendida a idéia, em caso de esquecimento, podemos obtê-la novamente. Veja...

Sendo:
i: a taxa de juros em cada período
C: o capital inicial
n: o número de períodos considerados (meses, anos etc)
M_n: o montante após n períodos


No início, para n=0, temos:

M_0 = C


Após 1 período:


Quando n=1, aplicamos pela primeira vez a taxa de juros:

M_1 = M_0 + M_0 \cdot \frac{i}{100}

Substituindo M_0:

M_1 = C + C \cdot \frac{i}{100}

Colocando C em evidência:

M_1 = C \left( 1 + \frac{i}{100} \right)

Após 2 períodos:


Da mesma forma, temos o montante anterior acrescido do percentual relacionado à taxa de juros:

M_2 = M_1 + M_1 \cdot \frac{i}{100}

Colocando M_1 em evidência:

M_2 = M_1 \left( 1 + \frac{i}{100} \right)

Substituindo M_1:

M_2 = C \left( 1 + \frac{i}{100} \right) \cdot \left( 1 + \frac{i}{100} \right)

M_2 = C \left( 1 + \frac{i}{100} \right)^2


Após 3 períodos:


O mesmo processo, aplicando a taxa de juros sobre o montante atual:

M_3 = M_2 + M_2 \cdot \frac{i}{100}


Colocando M_2 em evidência:

M_3 = M_2 \cdot \left( 1 + \frac{i}{100} \right)

Substituindo M_2:

M_3 = C \left( 1 + \frac{i}{100} \right)^2 \cdot \left( 1 + \frac{i}{100} \right)

M_3 = C \left( 1 + \frac{i}{100} \right)^3


Após 4 períodos:


Fazendo da mesma forma, obtemos:

M_4 = C \left( 1 + \frac{i}{100} \right)^4


\vdots


Após n períodos:


Percebemos uma forma geral para o montante:

M_n = C \left( 1 + \frac{i}{100} \right)^n

Esta expressão pode ser provada por indução matemática, mas este seria outro assunto.

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.