• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade com eventos independentes?

Probabilidade com eventos independentes?

Mensagempor Leone de Paula » Qui Jun 17, 2010 23:17

De 7 enfermeiros, um hospital escolheu 3, aleatoriamente, para um plantão. Qual é a probabilidade de Alberto ser um dos escolhidos e Pedro ficar de folga?
Leone de Paula
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Jun 16, 2010 22:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: formado

Re: Probabilidade com eventos independentes?

Mensagempor Moreno1986 » Qua Jun 23, 2010 00:37

De 7 enfermeiros, um hospital escolheu 3, aleatoriamente, para um plantão. Qual é a probabilidade de Alberto ser um dos escolhidos e Pedro ficar de folga?


C5,2/C7,3 = 10/35 = 2/7

Acho que é isso!
Moreno1986
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Ter Abr 13, 2010 01:20
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em mecânica
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}