• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em Combinatória - Competição

Dúvida em Combinatória - Competição

Mensagempor andymath » Sex Mai 21, 2010 23:04

O problema é o seguinte:
Numa competição, cada um dos quatro juízes deve atribuir notas de 1 a 6 para cada participante. Para ser finalista, um participante deve ter no mínimo 22 pontos.
\rightarrow Encontre o número de maneiras que os juízes têm para atribuir notas de modo que um participante seja finalista.
Eu não estou conseguindo resolver esse problema. Peço ajuda, e agradeço, desde já.
andymath
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mar 31, 2010 18:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dúvida em Combinatória - Competição

Mensagempor angeruzzi » Ter Jun 08, 2010 02:55

Olá Andymath,

Eu resolveria este problema da seguinte maneira:
Vamos atribuir as notas de cada um dos juízes uma identificação x, y, z e w, de forma que para o participante ser finalista : x + y + z + w >= 22
Vamos resolver esta inequação em 3 partes:

a) x + y + z + w = 22
As possibilidades de notas seriam:
a1) 6 + 6 + 6 + 4
a2) 6 + 6 + 5 + 5

b) x + y + z + w = 23
As possibilidades de notas seriam:
b1) 6 + 6 + 6 + 5

c) x + y + z + w = 24 ( A nota máxima que pode ser obtida 6 + 6 + 6 + 6).
As possibilidades de notas seriam:
c1) 6 + 6 + 6 + 6

Temos ainda que calcular as permutações das 4 possibilidades de notas. Todas elas são permutações com repetição:
a1) P_{4}^{3} = \frac{4!}{3!} = 4
a2) P_{4}^{2,2} = \frac{4!}{2!.2!} = 6
b1) P_{4}^{3} = \frac{4!}{3!} = 4
c1) P_{4}^{4} = \frac{4!}{4!} = 1

Total de possibilidades = 4 + 6 + 4 + 1 = 15

Você tem o gabarito para confirmar?
angeruzzi
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 16, 2010 00:50
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.