por pkutwak » Qua Fev 24, 2010 00:02
Quantos são os inteiros compreendidos entre 1 e 1000 inclusive, que são divisíveis por exatamente dois dos números 2, 3, 7 e 10? E por pelos menos dois dos números 2, 3, 7 e 10?
(A) 233 e 295
(B) 233 e 299
(C) 233 e 373
(D) 299 e 299
(E) 299 e 373
Este exercício é de analise combinatória? Tentei resolver de outra forma.
Vemos que só a 999 números entre 1 e mil e faço mdc entre os números para descobrir quais dividem ao mesmo tempo 999.
Outra forma pensada por mim foi utlizar uma das fórmulas de análise combinatória, mas fiquei na dúvida, não sei se é arranjo ou combinação.
-
pkutwak
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Fev 23, 2010 23:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informática
- Andamento: formado
por Douglasm » Qua Fev 24, 2010 10:12
Olá pkutwak. Esse exercício é baseado no princípio da inclusão-exclusão. Basicamente você precisa definir quantos números são divísiveis por 2, por 3, por 7, por 10, por 2 E por 3, etc. Definidos todos esses subconjuntos, você deve associá-los de acordo com esse princípio. Sendo mais preciso, defina quantos dos números são divisíveis por um dos números, por 2 dos números, por 3 dos números e por 4 dos números, encontrando assim os seus 4 subconjuntos para aplicar a inclusão-exclusão. Eu fiz aqui rapidamente e consegui a letra A. Caso, mesmo depois de pesquisar sobre a inclusão-exclusão ainda tiver alguma dúvida me fale que mais tarde eu posto a solução completa pra ti. (agora estou um pouco ocupado, o problema é simples mas é meio grande =P).
Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Definir qual tipo de triângulo - Atividade com vetores.
por Raphaelphtp » Qua Jan 11, 2017 20:38
- 2 Respostas
- 1764 Exibições
- Última mensagem por Raphaelphtp

Sex Jan 13, 2017 19:11
Geometria Analítica
-
- [AVALIAR ERRO] Como eu resolvo um exercício desse tipo?
por amigao » Dom Mai 26, 2013 11:45
- 2 Respostas
- 3173 Exibições
- Última mensagem por amigao

Dom Mai 26, 2013 18:27
Cálculo: Limites, Derivadas e Integrais
-
- Qual a derivada deste exercício?
por ClaudianeLoira » Qua Jun 18, 2008 00:46
- 3 Respostas
- 8395 Exibições
- Última mensagem por Molina

Qua Jun 18, 2008 14:03
Cálculo: Limites, Derivadas e Integrais
-
- (Geometria) Qual a altura do prisma descrito no exercício
por andersontricordiano » Qui Out 06, 2011 13:08
- 0 Respostas
- 2091 Exibições
- Última mensagem por andersontricordiano

Qui Out 06, 2011 13:08
Geometria
-
- duvida qual calculo usar
por smallville » Sex Fev 12, 2010 10:13
- 1 Respostas
- 1163 Exibições
- Última mensagem por Molina

Sex Fev 12, 2010 11:40
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.