por Mcastilho » Qua Mar 07, 2012 20:48
Uma equipe de competição com 9 membros, sendo um coordenador
e seu adjunto, costuma expor seus projetos em eventos. Para
isso, a delegação enviada deve ser de no mínimo dois e no máximo
quatro componentes, sendo, pelo menos, um desses, o coordenador
ou o adjunto. O número de possibilidades de se compor cada delegação
é de
Eu tentei fazer combinação 9,2 . 9,4 mas nao deu certo
-
Mcastilho
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qua Fev 22, 2012 13:48
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia
- Andamento: cursando
por joaofonseca » Qua Mar 07, 2012 21:44
Neste problema, há que analisar 3 situação: delegação constituida por 2 elementos, 3 elementos e 4 elementos.
O adjunto ou o coordenador fazem obrigatoriamente parte da delegação.Pela interpretação do enunciado até podem estar os dois na mesma delegação.
Assim, para uma delegação de 2 elementos:

Para uma delegação de 3 elementos:

Para uma delegação de 4 elementos:

No final, 16+56+112=184 maneiras diferentes
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por cleberson » Qui Mar 08, 2012 13:41
Um estudante tem 5 livros diferentes de direito penal e 5 diferentes livros sobre direito civil. Ele deseja colocar 3 livros de direito militar e 4 sobre direito civil na prateleira de uma estante. Diante do exposto, assinale a alternativa que apresenta quantas maneiras ele pode fazer isso, de modo que os livros de mesmo assunto (penal ou civil) fiquem juntos.
a) 50
b) 100
c) 150
d) 200
Assinale a alternativa que apresenta o número de anagramas da palavra quartel que começam com AR.
a) 80
b) 120
c) 240
d)720
-
cleberson
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Mar 08, 2012 13:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: tecnólogo em segurança publica
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Análise Combinatória] DÚVIDAS
por smesza » Qui Jan 05, 2012 11:09
- 1 Respostas
- 1072 Exibições
- Última mensagem por fraol

Qui Jan 05, 2012 15:41
Estatística
-
- Duvidas de A.COMBINATORIA
por Mcastilho » Qua Fev 22, 2012 13:58
- 2 Respostas
- 6993 Exibições
- Última mensagem por fraol

Qua Fev 22, 2012 16:37
Estatística
-
- Duvidas de A.COMBINATORIA
por Mcastilho » Qua Fev 29, 2012 20:51
- 1 Respostas
- 2175 Exibições
- Última mensagem por joaofonseca

Qua Fev 29, 2012 22:53
Estatística
-
- Duvidas de A.COMBINATORIA
por Mcastilho » Qua Fev 29, 2012 23:12
- 1 Respostas
- 960 Exibições
- Última mensagem por fraol

Sex Mar 02, 2012 09:39
Estatística
-
- (( Analise combinatória ))
por Roberta » Dom Jul 13, 2008 17:28
- 8 Respostas
- 16096 Exibições
- Última mensagem por Aparecida

Sáb Mai 05, 2012 00:07
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.