• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação

Inequação

Mensagempor Rosana Vieira » Sáb Dez 03, 2011 16:24

Se alguém pode me ajudar a começar resolver estes exercicios

João Carlos está com baixas taxas das vitaminas A e B, sua nutricionista, receitou banana e abacaxi visando, assim, suprir uma deficiência diária de 500 UI (Unidades Internacionais) de vitamina A, e 0,7 mg de vitamina B. Como João Carlos também não pode consumir mais calorias do que as 2500 Kcal necessárias para o seu dia a dia agitado, é recomendável que o consumo desses dois itens não ultrapasse 1000 Kcal. Além disso, é sabido que em cada quilograma, a banana e o abacaxi contêm, aproximadamente, as seguintes quantidades de vitaminas A e B e de calorias:

Banana Abacaxi
Vitamina A (UI/kg) 1000 250
Vitamina B (mg/kg) 0,5 1
Calorias (Kcal/kg) 900 500


Usando que 1 kg de banana custa R$2,50 e que 1 kg de abacaxi custa R$3,00, qual seria a quantidade dessas frutas que deve ser consumida para suprir a deficiência de vitaminas, e, ao mesmo tempo, gastar o mínimo possível? Essa é a questão que irá nortear nossa atividade.
a) Construa um plano cartesiano com eixo horizontal de quantidade (kg) de bananas e eixo vertical quantidade (kg) de abacaxis.
b) Escolha 5 pontos distintos e preencha a tabela a seguir com os valores solicitados:

Coordenadas
do Ponto Quantidade de
Vit A (UI) Quantidade de
Vit B (MG) Calorias
(Kcal) Custo
c) Algum dos pontos que você escolheu satisfaz as condições da dieta? Quais? Justifique a sua resposta.
d) Se sim, será que existe uma forma de satisfazer a dieta gastando menos? Senão, determine um ponto que satisfaça. Justifique.
e) Podemos expressar as condições desse problema matematicamente. Uma inequação (pois ele precisa de, no mínimo, 500UI de vitamina A por dia) é que exprime a quantidade de vitamina A que ele deve consumir em função da quantidade de bananas e de abacaxis. Escreva essa inequação usando “a” para representar a quantidade, em kg, de abacaxis e “b” a quantidade, em kg, de bananas.
f) Represente a região que essa inequação delimita no plano que você construiu.
g) Escreva a inequação correspondente a quantidade de vitamina B em função das quantidades, em kg, de bananas e abacaxis.
h) Represente a região correspondente a inequação do item anterior no mesmo plano cartesiano.
i) Escreva a inequação correspondente a quantidade de calorias em função das quantidades, em kg, de bananas e abacaxis.
j) Represente a região correspondente a inequação do item anterior no mesmo plano cartesiano.
k) É aceitável que as quantidades de fruta não podem ser negativas. Assim, as três regiões determinadas pelas inequações dos itens “f”, “h” e “j” têm uma intersecção bem definida no
primeiro quadrante do plano cartesiano, ou seja, existe uma região formada apenas por pontos que satisfazem as três inequações. Qual é o formato dessa região?
l) Determine 3 pontos dentro dessa região (item anterior) e complete a tabela abaixo:

Coordenadas
do Ponto Quantidade de
Vit A (UI) Quantidade de
Vit B (MG) Calorias
(Kcal) Custo

m) Verifique os valores do custo que João Carlos terá se as quantidades de cada fruto forem as representadas pelos vértices da região que satisfaz a sua dieta.
Coordenadas
do Ponto Quantidade de
Vit A (UI) Quantidade de
Vit B (MG) Calorias
(Kcal) Custo

n) O resultado central de Programação Linear é: “Em um problema de otimização, no qual a função objetivo é linear e as restrições são dadas por inequações lineares, se houver solução ótima ela ocorrerá em algum dos vértices da região factível, ou seja, delimitada pelas restrições.”
No nosso caso a função objetivo, que queremos minimizar, é o custo. E as restrições são dadas pelos consumos mínimos de cada vitamina e pelo consumo calórico máximo.
Qual é a solução ótima nesse problema? Justifique sua resposta.
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D