• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Distribuição Padrnizada Z...Como resolver?

Distribuição Padrnizada Z...Como resolver?

Mensagempor Deko » Sáb Fev 05, 2011 19:36

Como resolver esta questão no Google Docs?

https://docs.google.com/document/d/1dzeVguwWiX_LHN_tQY6XVzynefPKhcJhZFG0xOdYRNM/edit?hl=pt_BR&authkey=COXsiKIN


Se alguém souber se habilite...Desisto!!!
Deko
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Mar 28, 2010 15:33
Formação Escolar: GRADUAÇÃO
Área/Curso: adm
Andamento: cursando

Re: Distribuição Padrnizada Z...Como resolver?

Mensagempor Rogerio Murcila » Sáb Fev 05, 2011 22:26

Neste documento tem tudo que voce precisa.

https://docs.google.com/viewer?a=v&pid= ... y=CPnsyb0M

Se continuar com duvidas entre em contato.
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.