• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Analise combinatoria

Analise combinatoria

Mensagempor cristina » Qui Ago 26, 2010 14:13

Olá estou com duvida neste exercicio.

{A}_{n,3} - {C}_{n,3} = 25  {C}_{n,n-1}

\frac{{C}_{8,n+2}}{{C}_{8,n+1}} = 12

Se alguem puder me ajudar agradeço
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: Analise combinatoria

Mensagempor DanielRJ » Qui Ago 26, 2010 15:49

cristina escreveu:Olá estou com duvida neste exercicio.

{A}_{n,3} - {C}_{n,3} = 25  {C}_{n,n-1}

\frac{{C}_{8,n+2}}{{C}_{8,n+1}} = 12

Se alguem puder me ajudar agradeço


Olá amiga a segunda eu consegui fazer vo demonstrar para voce:

\frac{{C}_{8,n+2}}{{C}_{8,n+1}} = 12


\displaystyle { \frac{ \frac {8!}{(n+2)!(n+2-8)!}}{\frac {8!}{(n+1)!(n+1-8)!} }}=12 corta 8! de cima com o debaixo fica assim.



\frac {(n+2)!(n-6)!} {(n+1)!(n-7)!}=12 desenvolve (n+2) e (n-6) para poder cortar em baixo.


\frac {(n+2)(n+1)!(n-6)(n-7)!} {(n+1)!(n-7)!}=12 corta (n+1) e (n-7)!

{(n+2)(n-6)=12 faz a distributiva!

n^2-6n+2n-12=12

n^2-4n-24=0 faz baskara e acha o N!! valeu depois eu resolvo a outra.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor cristina » Qui Ago 26, 2010 16:50

Obrigada pela dica, onde é 12 coloquei errado é 2, porém nao consigo achar a raiz quadrada, não dá certo.
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: Analise combinatoria

Mensagempor DanielRJ » Qui Ago 26, 2010 19:34

cristina escreveu:Obrigada pela dica, onde é 12 coloquei errado é 2, porém nao consigo achar a raiz quadrada, não dá certo.


Oi amiga essa questão é de concurso? tem resposta?
porque eu tambem não consegui achar o valor de n não. vamos esperar uma almar boa ajudar agente.. mas as conta em cima estão tudo certinho ok?
sobre a primera questão que voce postou ela é um pouco trabalhosa consegui fazer mas vai demorar pra min fazer um latex dela então aguarda ai vlw . :y:
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor cristina » Qui Ago 26, 2010 19:43

Oi amigo, já tentei de tudo tbem e não consegui, as alternativas que tenho são:
a) 5
b) 6
c) 1
d) 7
e) 9
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: Analise combinatoria

Mensagempor DanielRJ » Qui Ago 26, 2010 20:21

cristina escreveu:Oi amigo, já tentei de tudo tbem e não consegui, as alternativas que tenho são:
a) 5
b) 6
c) 1
d) 7
e) 9


vo levar ela para um professor tentei substituir umas das opçoes no lugar de N para ver se zera a equação mas não deu.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor Douglasm » Qui Ago 26, 2010 21:30

Bom, vamos ao primeiro:

A_{n,3} - C_{n,3} = 25C_{n,n-1} \;\therefore

\frac{n!}{(n-3)!} - \frac{n!}{3!.(n-3)!} = 25n \;\therefore

(3!-1).\frac{n!}{3!.(n-3)!} = 25n \;\therefore

5.\frac{n.(n-1).(n-2)}{6} = 25n \;\therefore

n^3 - 3n^2 + 2n = 30n \;\therefore

n^2 - 3n - 28 = 0 \;\therefore

n = 7 \;\mbox{(note que a raiz negativa nao nos interessa)}

Agora para o segundo problema:

\frac{C_{8,n+2}}{C_{8,n+1}} = 2

\frac{8!}{(n+2)!.(8-n-2)!} . \frac{(n+1)!.(8 - n - 1)!}{8!} = 2 \;\therefore

\frac{8!}{(n+2)!.(6-n)!} . \frac{(n+1)!.(7- n)!}{8!} = 2 \;\therefore

\frac{(7-n)}{(n+2)} = 2 \;\therefore

7-n = 2n + 4 \;\therefore

n = 1

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor DanielRJ » Qui Ago 26, 2010 22:10

Douglasm escreveu:Bom, vamos ao primeiro:

A_{n,3} - C_{n,3} = 25C_{n,n-1} \;\therefore

\frac{n!}{(n-3)!} - \frac{n!}{3!.(n-3)!} = 25n \;\therefore

(3!-1).\frac{n!}{3!.(n-3)!} = 25n \;\therefore

5.\frac{n.(n-1).(n-2)}{6} = 25n \;\therefore

n^3 - 3n^2 + 2n = 30n \;\therefore

n^2 - 3n - 28 = 0 \;\therefore

n = 7 \;\mbox{(note que a raiz negativa nao nos interessa)}

Agora para o segundo problema:

\frac{C_{8,n+2}}{C_{8,n+1}} = 2

\frac{8!}{(n+2)!.(8-n-2)!} . \frac{(n+1)!.(8 - n - 1)!}{8!} = 2 \;\therefore

\frac{8!}{(n+2)!.(6-n)!} . \frac{(n+1)!.(7- n)!}{8!} = 2 \;\therefore

\frac{(7-n)}{(n+2)} = 2 \;\therefore

7-n = 2n + 4 \;\therefore

n = 1

Até a próxima.


Douglas é igual a 12 graças a você percebi que botei a formula na ordem errada! vo postar a resolução:
Editado pela última vez por DanielRJ em Qui Ago 26, 2010 22:36, em um total de 1 vez.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor Douglasm » Qui Ago 26, 2010 22:32

Em seu segundo post, Cristina afirmou ter errado, que na verdade a segunda expressão é igual a 2. Veja só:

cristina escreveu:Obrigada pela dica, onde é 12 coloquei errado é 2, porém nao consigo achar a raiz quadrada, não dá certo.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor DanielRJ » Qui Ago 26, 2010 22:39

aff. to aqui igual um troxa fazendo erradoe entao
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor cristina » Sex Ago 27, 2010 00:48

Amigo, desulpe te incomodar mais uma vez,
não entendi em relação ao primeiro problema, da onde surgiu o 3 fatorial - 1 e de subtração pasou para multiplicação
não compreendi o seu raciocinio.
abs
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: Analise combinatoria

Mensagempor Douglasm » Sex Ago 27, 2010 09:46

Vou detalhar um pouco mais só essa parte, veja se compreende:

\frac{n!}{(n-3)!} - \frac{n!}{3!.(n-3)!} = 25n\;\therefore

\frac{3!}{3!}.\frac{n!}{(n-3)!} - \frac{n!}{3!.(n-3)!} = 25n

Agora, colocando o n!/3!.(n-3)! em evidência temos:

(3!-1).\frac{n!}{3!.(n-3)!} = 25n \;\therefore

(6-1).\frac{n.(n-1).(n-2).(n-3)!}{6.(n-3)!} = 25n \;\therefore

5.\frac{n.(n-1).(n-2)}{6} = 25n \;(...)

Ai é só continuar como já fiz anteriormente.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor cristina » Sex Ago 27, 2010 11:37

Obrigada
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59