• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(( Analise combinatória ))

(( Analise combinatória ))

Mensagempor Roberta » Dom Jul 13, 2008 17:28

olá pessoal! :mrgreen:

Vcx poderiam me ajudar a resolver esta questão de Análise Comb?
Eu só não tenho a resposta :-P

Um grupo de 8 pessoas se hospedará em um hotel. De quantas formas elas poderão se arrumar, sendo 3 no quarto 2A, 3 no quarto 2B e 2 no quarto 2C?

a) 2.320 b)7.560 c)980 d) 1.120 e)3.680

Eu tentei C8,3 x C5,3 x C2,2 = 560 :-(
Mesmo sem fazer sentido, tentei A8,3 x A5,3 X A2,2 = 40.320 (muito...)
Tb tentei P3 x P3 x P2 X P3 = 432 :-(
Só pra não dizer que não tentei tudo... 2 x C8,3 x C8,2 = 3136 :-(


*** Ah.. outra perguntinha:
Em permutações circulares existe uma fórmula diferenciada se houver repetição de elementos??????

Obrigada! :mrgreen:
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: (( Analise combinatória ))

Mensagempor admin » Dom Jul 13, 2008 19:23

Olá Roberta!

Sobre a sua outra pergunta, não é algo trivial.
Localizei uma discussão interessante, seguem os links, veja na seqüência:
http://www.mat.puc-rio.br/~obmlistas/ob ... 00171.html
http://www.mat.puc-rio.br/~obmlistas/ob ... 00187.html
http://www.mat.puc-rio.br/~obmlistas/ob ... 00194.html
http://www.mat.puc-rio.br/~obmlistas/ob ... 00211.html



Quanto ao problema, acredito que a idéia de sua primeira tentativa seja mesmo a base da resolução.
Adicionalmente, as 3 pessoas dos 56 modos para 2A, podem trocar de quarto com as 3 pessoas dos 10 modos do quarto 2B. Então, ainda temos o dobro das possibilidades calculadas, ou seja, 1120.
Para o quarto 2C continuará restando apenas um modo.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: (( Analise combinatória ))

Mensagempor Roberta » Dom Jul 13, 2008 19:36

Obrigada pela ajuda, Fábio!

:mrgreen:
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: (( Analise combinatória ))

Mensagempor paulo testoni » Qua Out 01, 2008 11:35

Hola fabiosouza.

Colocando as 8 pessoas no quarto 2C, teríamos: C8,2 = 28 formas de alojá-los.
Para cada uma dessas 28 combinações teríamos para o quarto 2B:
C6,3 = 20 forma de alojá-los, que dariam 28*20 = 560 maneiras já que o quarto 2A ficaria automaticamente defenido. Portanto, se vc colocar as 8 pessoas no quarto 2A teremos: C8,3 = 56 e colocando 5 pessoas no quarto 2B teremos:
C5,3 = 10, e pelo princípio multiplicativo teremos: 56*10 = 560 formas de alojá-los, já que o quarto 2C se define por si só.
Vc disse:
Adicionalmente, as 3 pessoas dos 56 modos para 2A, podem trocar de quarto com as 3 pessoas dos 10 modos do quarto 2B. Então, ainda temos o dobro das possibilidades calculadas, ou seja, 1120.
Procedendo assim vc estará contando cada pessoa duas vezes. A Roberta deve ter digitado a alternativa errada ou a fonte dela estava errada. A resposta é 560.
paulo testoni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Ter Set 30, 2008 11:24
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: (( Analise combinatória ))

Mensagempor Roberta » Qua Out 01, 2008 12:06

oi Paulo Testoni!! :-)
Acabo de ver sua resposta à minha pergunta. Mesmo tendo passado tanto tempo é sempre bom ler outra opinião a respeito. Vi o seu comentário ...

A Roberta deve ter digitado a alternativa errada ou a fonte dela estava errada. A resposta é 560.
Hola fabiosouza.


É bem possível. Hoje não estou com o material em mãos. Mas verificarei e assim que possível e volto para colocar um comentário. Lembro que, antes do meu post, tico e teco (meus neurônios) brigaram muito sem chegar a um acordo a respeito desta questão... rsss

Obrigada pelo comentário!!
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: (( Analise combinatória ))

Mensagempor paulo testoni » Qua Out 01, 2008 15:21

Hola fabiosouza.

Estava olhando por acaso esse fórum quando me deparei com essa questão. O interessante é que parte da alternativa b)7.560 corresponde a resposta correta. Acredito que realmente o seu tico e teco tenham se confundido. O resto é só alegria.
paulo testoni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Ter Set 30, 2008 11:24
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: (( Analise combinatória ))

Mensagempor Roberta » Qua Out 01, 2008 15:25

kkkkkkkkkkkkk :lol:
O resto é só alegria.
:party:

:lol: :lol: :lol:

:-) Roberta
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: (( Analise combinatória ))

Mensagempor admin » Qua Out 01, 2008 15:43

Olá paulo testoni!
Boas-vindas e obrigado pela correção!

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: (( Analise combinatória ))

Mensagempor Aparecida » Sáb Mai 05, 2012 00:07

OLA PESSOAL, ALGUEM PODERIA ME AJUDAR?
1. Um lote contém 12 itens bons e 8 itens defeituosos. Uma amostra de 5 itens é extraída. Determine o total de amostras contendo exatamente 3 itens bons.
Aparecida
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Dom Out 30, 2011 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D