por Roberta » Dom Jul 13, 2008 17:28
olá pessoal!
Vcx poderiam me ajudar a resolver esta questão de Análise Comb?
Eu só não tenho a resposta
Um grupo de 8 pessoas se hospedará em um hotel. De quantas formas elas poderão se arrumar, sendo 3 no quarto 2A, 3 no quarto 2B e 2 no quarto 2C?
a) 2.320 b)7.560 c)980 d) 1.120 e)3.680
Eu tentei C8,3 x C5,3 x C2,2 = 560
Mesmo sem fazer sentido, tentei A8,3 x A5,3 X A2,2 = 40.320 (muito...)
Tb tentei P3 x P3 x P2 X P3 = 432
Só pra não dizer que não tentei tudo... 2 x C8,3 x C8,2 = 3136
*** Ah.. outra perguntinha:
Em permutações circulares existe uma fórmula diferenciada se houver repetição de elementos??????
Obrigada!
Roberta.gmail
-
Roberta
- Usuário Parceiro
-
- Mensagens: 56
- Registrado em: Qui Jun 19, 2008 17:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: estudante de direito
- Andamento: cursando
por admin » Dom Jul 13, 2008 19:23
Olá Roberta!
Sobre a sua outra pergunta, não é algo trivial.
Localizei uma discussão interessante, seguem os links, veja na seqüência:
http://www.mat.puc-rio.br/~obmlistas/ob ... 00171.htmlhttp://www.mat.puc-rio.br/~obmlistas/ob ... 00187.htmlhttp://www.mat.puc-rio.br/~obmlistas/ob ... 00194.htmlhttp://www.mat.puc-rio.br/~obmlistas/ob ... 00211.htmlQuanto ao problema, acredito que a idéia de sua primeira tentativa seja mesmo a base da resolução.
Adicionalmente, as 3 pessoas dos 56 modos para 2A, podem trocar de quarto com as 3 pessoas dos 10 modos do quarto 2B. Então, ainda temos o dobro das possibilidades calculadas, ou seja, 1120.
Para o quarto 2C continuará restando apenas um modo.
-
admin
- Colaborador Administrador - Professor
-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Roberta » Dom Jul 13, 2008 19:36
Obrigada pela ajuda, Fábio!
Roberta.gmail
-
Roberta
- Usuário Parceiro
-
- Mensagens: 56
- Registrado em: Qui Jun 19, 2008 17:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: estudante de direito
- Andamento: cursando
por paulo testoni » Qua Out 01, 2008 11:35
Hola fabiosouza.
Colocando as 8 pessoas no quarto 2C, teríamos: C8,2 = 28 formas de alojá-los.
Para
cada uma dessas 28 combinações teríamos para o quarto 2B:
C6,3 = 20 forma de alojá-los, que dariam 28*20 = 560 maneiras já que o quarto 2A ficaria automaticamente defenido. Portanto, se vc colocar as 8 pessoas no quarto 2A teremos: C8,3 = 56 e colocando 5 pessoas no quarto 2B teremos:
C5,3 = 10, e pelo princípio multiplicativo teremos: 56*10 = 560 formas de alojá-los, já que o quarto 2C se define por si só.
Vc disse:
Adicionalmente, as 3 pessoas dos 56 modos para 2A, podem trocar de quarto com as 3 pessoas dos 10 modos do quarto 2B. Então, ainda temos o dobro das possibilidades calculadas, ou seja, 1120.
Procedendo assim vc estará contando cada pessoa duas vezes. A Roberta deve ter digitado a alternativa errada ou a fonte dela estava errada. A resposta é 560.
-
paulo testoni
- Usuário Dedicado
-
- Mensagens: 45
- Registrado em: Ter Set 30, 2008 11:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por Roberta » Qua Out 01, 2008 12:06
oi Paulo Testoni!!
Acabo de ver sua resposta à minha pergunta. Mesmo tendo passado tanto tempo é sempre bom ler outra opinião a respeito. Vi o seu comentário ...
A Roberta deve ter digitado a alternativa errada ou a fonte dela estava errada. A resposta é 560.
Hola fabiosouza.
É bem possível. Hoje não estou com o material em mãos. Mas verificarei e assim que possível e volto para colocar um comentário. Lembro que, antes do meu post, tico e teco (meus neurônios) brigaram muito sem chegar a um acordo a respeito desta questão... rsss
Obrigada pelo comentário!!
Roberta.gmail
-
Roberta
- Usuário Parceiro
-
- Mensagens: 56
- Registrado em: Qui Jun 19, 2008 17:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: estudante de direito
- Andamento: cursando
por paulo testoni » Qua Out 01, 2008 15:21
Hola fabiosouza.
Estava olhando por acaso esse fórum quando me deparei com essa questão. O interessante é que parte da alternativa b)7.560 corresponde a resposta correta. Acredito que realmente o seu tico e teco tenham se confundido. O resto é só alegria.
-
paulo testoni
- Usuário Dedicado
-
- Mensagens: 45
- Registrado em: Ter Set 30, 2008 11:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por Roberta » Qua Out 01, 2008 15:25
Roberta.gmail
-
Roberta
- Usuário Parceiro
-
- Mensagens: 56
- Registrado em: Qui Jun 19, 2008 17:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: estudante de direito
- Andamento: cursando
por admin » Qua Out 01, 2008 15:43
Olá paulo testoni!
Boas-vindas e obrigado pela correção!
Até mais!
-
admin
- Colaborador Administrador - Professor
-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Aparecida » Sáb Mai 05, 2012 00:07
OLA PESSOAL, ALGUEM PODERIA ME AJUDAR?
1. Um lote contém 12 itens bons e 8 itens defeituosos. Uma amostra de 5 itens é extraída. Determine o total de amostras contendo exatamente 3 itens bons.
-
Aparecida
- Usuário Dedicado
-
- Mensagens: 34
- Registrado em: Dom Out 30, 2011 22:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Análise Combinatória
por Rejane Sampaio » Sex Set 12, 2008 23:20
- 4 Respostas
- 12110 Exibições
- Última mensagem por Neilson
Ter Mai 01, 2012 01:23
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Sex Set 12, 2008 23:26
- 2 Respostas
- 8137 Exibições
- Última mensagem por Rejane Sampaio
Seg Set 15, 2008 10:08
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Qua Set 17, 2008 15:52
- 3 Respostas
- 7584 Exibições
- Última mensagem por Rejane Sampaio
Qui Set 25, 2008 10:43
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Qua Set 17, 2008 15:56
- 2 Respostas
- 6336 Exibições
- Última mensagem por Rejane Sampaio
Seg Set 22, 2008 11:27
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Qua Set 17, 2008 16:04
- 1 Respostas
- 8072 Exibições
- Última mensagem por juliomarcos
Qui Set 18, 2008 13:14
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois
2°) Admitamos que
, seja verdadeira:
(hipótese da indução)
e provemos que
Temos: (Nessa parte)
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que
seja verdadeiro, e pretendemos provar que também é verdadeiro para
.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:
, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como
é
a
, e este por sua vez é sempre
que
, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.