por Rejane Sampaio » Sex Set 12, 2008 23:20
Por favor, me ajude com essa questão.
Transpetro- 2006 Em um posto de observação foi montado um sinaleiro de formato pentagonal e em cada um de seus vertices foram colocadas duas lâmpadas de cores distintas, escolhidas entre 5 vermelhas e 5 verdes. Convenciona-se que, para a transmissão de uma mensagem, não pode ser acesa mais do que uma lâmpada por vértice, e que o número mínimo de vértices iluminados deve ser três. Se, cada vez que um conjunto de lâmpadas é aceso, transmite-se uma mensagem, o total de mensagens que podem ser transmitidas por esse sinaleiro é: resp- 192
-
Rejane Sampaio
- Usuário Ativo
-
- Mensagens: 14
- Registrado em: Sex Set 12, 2008 22:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por admin » Ter Set 16, 2008 20:07
Olá
Rejane Sampaio, boas-vindas!
Sugiro dividir em 3 casos: 3 vértices acesos, 4 vértices acesos e 5 vértices acesos.
Lembrando que um vértice aceso significa uma única lâmpada acesa no vértice correspondente.
Para simplificar, considere a seguinte nomeação:
A: vértice com uma lâmpada vermelha acesa;
B: vértice com uma lâmpada verde acesa;
Caso 1) 3 vértices acesos1A e 2B =
2A e 1B =
3A =
3B =
Caso 2) 4 vértices acesos1A e 3B =
2A e 2B =
3A e 1B =
4A =
4B =
Caso 3) 5 vértices acesos1A e 4B =
2A e 3B =
3A e 2B =
4A e 1B =
5A =
5B =
Bons estudos!
-
admin
- Colaborador Administrador - Professor
-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Rejane Sampaio » Qua Set 17, 2008 12:43
muito obrigada Fábio, agora entendi. Mas achei essa questão bem complicada!
-
Rejane Sampaio
- Usuário Ativo
-
- Mensagens: 14
- Registrado em: Sex Set 12, 2008 22:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por Angela Aguiar » Sex Abr 13, 2012 21:32
Fabiosousa,
Boa noite, tenho uma dúvida na sua resolução.
Quando você cita a combinação envolvendo as lâmpadas verdes "B", você considerou 4 luzes, num universo de 5, e, ainda, foi reduzindo para 3, 2..., ou seja, n=4 e não n=5. O mesmo não aconteceu com a lâmpadass vermelhas "A" , essas você considerou n=5.
Não consegui enxergar no enunciado nada que me indicasse esse passo.
Vou abusar de seu conhecimento e fazer mais uma pergunta. É possível a resolução por meio da permutação circular com repetição? Obrigada
-
Angela Aguiar
- Novo Usuário
-
- Mensagens: 1
- Registrado em: Sex Abr 13, 2012 21:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Direito
- Andamento: formado
por Neilson » Ter Mai 01, 2012 01:23
no caso dessa questao, quando estao os 5 vertices acesos, considerando que existam 4 luzes vermelhas acesas, haverá 1 verde acesa (4A e 1B), 3 vermelhas implicarão em 2verdes (3A e 2B) e assim por diante (2A e 3B, 1A e 4B).
quando vc calcula a combinação de se ter uma lampada acesa de uma cor das 5 lampadas possiveis, sobram depois apenas 4 outras lampadas para 4 posições possiveis, não importando a ordem em q elas aparecerão, por isso nao cabe aqui usar permutação circular
espero ter ajudado
-
Neilson
- Novo Usuário
-
- Mensagens: 1
- Registrado em: Ter Mai 01, 2012 00:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (( Analise combinatória ))
por Roberta » Dom Jul 13, 2008 17:28
- 8 Respostas
- 15843 Exibições
- Última mensagem por Aparecida
Sáb Mai 05, 2012 00:07
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Sex Set 12, 2008 23:26
- 2 Respostas
- 8137 Exibições
- Última mensagem por Rejane Sampaio
Seg Set 15, 2008 10:08
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Qua Set 17, 2008 15:52
- 3 Respostas
- 7583 Exibições
- Última mensagem por Rejane Sampaio
Qui Set 25, 2008 10:43
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Qua Set 17, 2008 15:56
- 2 Respostas
- 6336 Exibições
- Última mensagem por Rejane Sampaio
Seg Set 22, 2008 11:27
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Qua Set 17, 2008 16:04
- 1 Respostas
- 8072 Exibições
- Última mensagem por juliomarcos
Qui Set 18, 2008 13:14
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {
} e B = {
}, então o número de elementos A
B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {
} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {
} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.