• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Nadadores na piscina

Nadadores na piscina

Mensagempor Cleyson007 » Dom Mai 10, 2009 00:54

Alguém pode me explicar como resolvo a questão abaixo?

Dois nadadores, posicionados em lados opostos de uma piscina retangular e em raias adjacentes, começam a nadar em um mesmo instante, com velocidades constantes. Sabe-se que, nas duas primeiras vezes em que ambos estiveram lado a lado, eles nadavam em sentidos opostos: na primeira vez, a 15 m de uma borda e, na segunda vez, a 12 m da outra borda. Considerando-se essas informações, é CORRETO afrmar que o comprimento dessa piscina é
A) 21 m
B) 27 m
C) 33 m
D) 54 m

Desde já agradeço pela ajuda.

Até mais
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Nadadores na piscina

Mensagempor Molina » Seg Mai 11, 2009 06:25

Olá Cleyson.

Estranho, cheguei na resposta que a piscina mede 18m. E não tem nas opções esta resposta.
Usei proporção para chegar nesse valor:

Vou denotar por R o nadador mais rápido e por L o mais lento.

1º Encontro:

R: 2x-15
L: 15

2º Encontro (distância total que eles percorrem até agora):

R: 3x-12
L: x+12

Fazendo a proporção de ambos:

\frac{2x-15}{15}=\frac{3x-12}{x+12} \Rightarrow x=18

Estranho.. Se achar meu possível erro, informa aqui, ok?

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Nadadores na piscina

Mensagempor Cleyson007 » Ter Mai 12, 2009 17:14

Boa tarde Molina, tudo bem?

Estou estudando o raciocínio da questão, mas ainda não terminei os cálculos. *-)

Quanto ao modo que você resolveu... não consegui entender a 1ª equação do 1º encontro --> R:2x-15

Não entendi o porque do 2x (aqui o candidato ainda não tinha completado a distância total)

Quando terminar o meu racicionínio coloco no fórum, ok?

---> Obrigado por estar me ajudando :-O
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Nadadores na piscina

Mensagempor Molina » Ter Mai 12, 2009 18:21

Olá Cleyson.

Eu tentei esse problema fazendo desenhos.
Acho que é uma boa forma de resolver.

O 2x- 15 deve-se ao fato de ele ter ja completado ja uma piscina toda (tamanho x) e nao ter completado ainda a "volta" (tamanho x - 15). Fiz essa relação pois eles se encontraram e quando se encontram o mais rápido ja tinha feito uma piscina e estava voltando para o início novamente. O mais lento estava ainda "indo" completar a primeira piscina. Por isso que eles se encontraram em sentidos opostos.

[]s =)
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Nadadores na piscina

Mensagempor Cleyson007 » Seg Jun 01, 2009 16:42

Boa tarde Molina, tudo bem?

Acho que consegui desenvolver o raciocínio da questão. Estou usando a fórmula de Velocidade Média, veja só:

Pela fórmula de Velocidade Média (Vm={S}_{f}-{S}_{0}/{t}_{f}-{t}_{0})

1º encontro: {t}_{1}=\frac{{d}_{1}}{{V}_{1}} --> {t}_{1}=\frac{d-15}{{V}_{1}}

{t}_{2}=\frac{{d}_{2}}{{V}_{2}} --> {t}_{2}=\frac{15}{{V}_{2}}

{t}_{1}={t}_{2} --> \frac{d-15}{{V}_{1}}=\frac{15}{{V}_{2}}

\frac{{V}_{1}}{{V}_{2}}=\frac{d-15}{15}

2º encontro: {t}_{1}=\frac{{d}_{1}}{{V}_{1}} --> {t}_{1}=\frac{2d-12}{{V}_{1}}

{t}_{2}=\frac{{d}_{2}}{{V}_{2}} --> {t}_{2}=\frac{d+12}{{V}_{2}}

Pelo mesmo procedimento: \frac{{V}_{1}}{{V}_{2}}=\frac{2d-12}{d+12}

Continuando: \frac{d-15}{15}=\frac{2d-12}{d+12}

Resolvendo: d=33m

Será que está certo?

Um abraço.

Até mais
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D