• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistema Linear] MACK-SP: Sistema de Equações

[Sistema Linear] MACK-SP: Sistema de Equações

Mensagempor ALF » Sex Ago 26, 2011 13:24

Dado o Sistema:

ax + 2y + z = 0
2x + ay - z = 1 - a
x + y + z = 1

Ao tentar resolvê-lo por castilho cheguei no seguinte resultado:
1.
a² -a - 3 = 0
a = 1 +- \sqrt[2]{13} / 2

2. a² =3

Resposta correta: Não admite solução para 3 valores de a.
ALF
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Ago 26, 2011 12:53
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Sistema Linear] MACK-SP: Sistema de Equações

Mensagempor LuizAquino » Dom Ago 28, 2011 12:57

Qual é o texto completo do exercício?

Temos o sistema:
\begin{cases}
ax + 2y + z = 0 \\
2x + ay - z = 1 - a \\
x + y + z = 1
\end{cases}

Para que o sistema não possua solução alguma, ele deve ser impossível. Para isso acontecer, a matriz dos coeficientes deve ter determinante nulo e alguma das matrizes das incógnitas deve ter determinante não nulo. Em resumo, deve ocorrer det(D) = 0 e det(Dx), det(Dy) ou det(Dz) diferente de zero.

Nesse exercício, a matriz dos coeficientes é:
D=
\begin{bmatrix}
a & 2 & 1 \\
2 & a & -1 \\
1 & 1 & 1 \\
\end{bmatrix}
\Rightarrow \det D = a^2 - 4

Por outro lado, a matriz da incógnita x é:
D_x=
\begin{bmatrix}
0 & 2 & 1 \\
1-a & a & -1 \\
1 & 1 & 1 \\
\end{bmatrix}
\Rightarrow \det D_x = -3

Agora termine de analisar o exercício.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}