• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Razão 33

Razão 33

Mensagempor Raphael Feitas10 » Sex Jun 10, 2011 22:33

Numa caixa existe bolas brancas e bolas pretas. Se tirarmos 16 bolas brancas, a razão entre as bolas brancas e as pretas será de 1 para 3. Em seguida, retiram-se 7 bolas pretas, restando na caixa a razão entre 1 bola branca para 2 bolas pretas. Determine quantas bolas de cada cor havia inicialmente na caixa.R: 23 brancas e 21 pretas.

Brother me ajuda mais umas vez conseguei fazer ate aqui mas ñ achei a resposta,me ajuda aew desde já agradecido...

16-x=\frac{1}{3} \Rightarrow 7-x=\frac{1x}{2y}
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Razão 33

Mensagempor deangelo » Sáb Jun 11, 2011 02:04

Equacionando o problema, temos

b = número de bolas brancas
p = números de bolas pretas

Assim obtemos o sistema:

\frac{b-16}{p} = \frac{1}{3} \ (1) \\
\frac{b-16}{p-7} = \frac{1}{2} \ (2)

Resolvendo:

Isolando p em (1), temos

p = 3b - 48

Agora substituindo p em (2), temos

2b - 32 = p - 7 \Rightarrow 2b = p - 7 + 32 \Rightarrow 2b = 3b - 48 - 7 + 32 \Rightarrow b = 23

Agora que temos b, calculamos o valor de p

p = 3(b - 16)  \Rightarrow p = 3(23 - 16) \Rightarrow p = 3.7 \Rightarrow p =21

Portanto a quantidade inicial de bolas brancas é de 23, e de pretas 21.
"É por intuição que descobrimos, e pela lógica que provamos". [Henri Poincaré]
Avatar do usuário
deangelo
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Out 11, 2010 03:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática-UFES
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.