• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema Linear

Sistema Linear

Mensagempor Bruno Pinheiro » Dom Dez 26, 2010 22:47

Olá, estou com dúvidas em relação a este exercício. Cheguei a um início de caminho, mas não encontro saída para chegar às alternativas disponíveis. Segue abaixo a questão, com meu raciocínio e minha resolução:

(CESGRANRIO) Um dos pares (x,y) que é solução do sistema:

|x|=y+6 ...(1)
x²+y=14 ...(2)

a)(-11,2)
b)(-11,2)
c)(-4,-2) (gabarito)
d)(4,2)
e)(8,2)

De (1) vem:
\left[x \right]=y+6, se \;y\succ-6
\left[x \right]=-y+6, se \;y\prec-6

Substituindo (1) em (2), tem-se:
(y+6)² + y - 14=0 => y'=-11 e y''=-2 => x'=-(-11)+6=17 X''=(-2)+6=4 => (x,y)=(17, -11) ou (-2,4).
Bruno Pinheiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Dez 26, 2010 21:18
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: Sistema Linear

Mensagempor Elcioschin » Seg Dez 27, 2010 21:23

|x| = y + 6 ----> Temos duas soluções:

1) + x = y + 6 ----> y = x - 6 -----> x² + y = 14 ----> x² + x - 6 = 14 ----> x² + x - 20 = 0 ----> Raízes x = - 5 e x = 4

1.1) Para x = - 5 -----> y = - 5 - 6 ----> y = - 11 -----> (-5, -11)
1.2) Para x = 4 ------> y = 4 - 6 ------> y = - 2 ------> (4, -2)

2) - x = y + 6 -----> y = - x - 6 -----> x² + y = 14 ----> x² - x - 6 = 14 ------> x² - x - 20 = 0 ----> Raízes: x = 5 e x = - 4

2.1) Para x = 5 -----> y = - 5 - 6 ----> y = - 11 -----> (5, -11)
1.2) Para x = - 4 -----> y = 4 - 6 ------> y = - 2 ------> (-4, -2)
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Sistema Linear

Mensagempor Bruno Pinheiro » Ter Dez 28, 2010 00:59

Muito obrigado!!
Bruno Pinheiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Dez 26, 2010 21:18
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Ambiental
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59