• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.proposto

exerc.proposto

Mensagempor adauto martins » Qua Set 18, 2019 13:24

(ita-instituto tecnologico de aeronautica-exame de admissao 1953)
discutir o sistema
\begin{align}

   mx + y - z=0 \\

   x + my + z= 0 \\

   x - y = 2    \\

   
\end{align}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 989
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor adauto martins » Qua Nov 27, 2019 17:25

primeiramente peço minhas desculpas aos colegas,leitores e estudantes desse site,pois editei erroneamente a primeira equaçao do sistema...vamos ao sistema correto e sua soluçao:
mx+y-z=4

x+my+z=0

x-y   =2

quando resolvemos um sistema de equaçao,procuramos os pontos em comuns das equaçoes,que podem ser pontos,retas,planos,superficies,hiperplanos etc...
o nosso sistema é de equaçoes lineares de primeiro grau,ou seja,todas as incognitas(x,y,z)tem potencia igual a 1.
nosso sistema é de 3 equaçoes,3 incognitas...vamos usar a "regra de cramer",pois o sistema é de poucas incognitas.
como tambem existe o "rouche-capelli",que é mais eficiente quando se trata de "discutir o sistema"."discutir o sistema" é saber as condiçoes de solubilidade,ou nao...e em caso de soluvel,achar os valores dessas incognitas...
tomamos o determinante da matriz incompleta

\Delta=
\begin{vmatrix}
   m  & 1 & -1 \\
   1  & m & 1 \\
   1  & -1 & 0 \\
  
   
\end{vmatrix}

\Delta=m.m.0+1.1.1+(-1).1.(-1)-((1.m.(-1)+(-1).1.m+(1.1.0))
      
      =0+1+1-(-m-m+0)

      =2+2m\neq 0

\Rightarrow m\neq -1...

para se ter soluçao...

e

m=-1...

para se ter ou nao soluçao...m=-1,nao tera pois,o sistema

-x+y-z=4

x -y+z=0

x-y=2

subst. (3) em (2)

z=-2...subst. z,x,y na (1)

-x+y-z=y-x-z=-2-(-2)=-2+2=0\neq4
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 989
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}